• Title/Summary/Keyword: Flow control plate

Search Result 222, Processing Time 0.025 seconds

Analysis of flow rate of variable displacement compressor ECV in automobile air conditioning control system (자동차 공조장치의 가변압축기 ECV 유량 분석)

  • Jeong, Yeong Jun;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.394-398
    • /
    • 2013
  • At present, using of electromagnetic control valve (ECV) in external variable displacement swash plate type compressor is a common issue. Solenoid operated ECV controls vehicle air conditioning system through a pulse width modulation (PWM) input signal that supplied from an external source. Different port pressure controls the swash plate movement inside the compressor at certain angles that finally determines the refrigerant flow rate to the vehicle compartment for passengers comfort. In this paper, crankcase pressure flow (Pc flow) is calculated with some ECV samples with corresponding to amount of variable supply of current ranges from 0.20Amp to 0.95Amp.

An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreeze Solution

  • Chang Young-Soo;Yun Won-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.66-75
    • /
    • 2006
  • The effect of antifreeze solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreeze solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation while having small thermal resistance across the film. A porous layer coating technique is adopted to improve the wettability of the antifreeze solution on a parallel plate heat exchanger. The antifreeze solution spreads widely on the heat exchanger surface with $100{\mu}m$ thickness by the capillary force resulted from the porous structure. It is observed that the antifreeze solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by the thin liquid film are only $1{\sim}2%$ compared with those for non-liquid film surface.

Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump (사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구)

  • Kim, Jeong-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

Drag Reduction on n Circular Cylinder using a Detached Splitter Plate (분리된 분할판에 의한 원형단면 실린더의 항력감소)

  • Seon, Seung-Han;Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1632-1639
    • /
    • 2001
  • Control of drag farce on a circular cylinder using a detached splitter plate is numerically studied for laminar flow. A splitter plate with the same length as the cylinder diameter(d) is placed horizontally in the wake region. Its position is described by the gap ratio(G/d), where G represents the gap between the cylinder base point and the leading edge of the plate. The drag varies with the gap ratio; it has the minimum value at a certain gap ratio for each Reynolds number. The drag sharply increases past the optimum gap ratio; this seems to be related to the sudden change in bubble size in the wake region. This trend is consistent with the experimental observation currently available in case of turbulent flow. It is also found that the net drag coefficient significantly depends on the variation of base suction coefficient.

Numerical Analysis of an Air-cooled Ammonia Condenser with Plate Fins

  • Kim, Young-Il;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.104-112
    • /
    • 1998
  • Ammonia has been used as refrigerant for more than 100 years in absorption as well as in compression systems. Due to its poisonous and inflammable properties, however, its use has been mainly on heavy industrial plants in which regular maintenance is available. For these systems, condensers are generally water∼cooled. This is suitable for large systems over 20RT but is not suitable for small systems. In order to apply ammonia for a small system, it is important to adopt an air-cooled condenser. In this study, simple numerical analysis of an air-cooled condenser for an ammonia refrigeration system has been carried out. The condenser is designed as horizontal tubes with plate fins attached at the outer surface to enhance the air-side heat transfer rate. Effect of fin shape and arrangement are studied in detail. Since the local heat transfer coefficient is highest at the leading edge, heat flux is highest at the edge and decreases along the distance. Conditions of inlet air are also varied in the study and condenser length that is required for full condensation is calculated. The results show that it is important to enhance both the air-side and internal heat transfer coefficients.

  • PDF

THE STUDY ON THE SEPARATED FLOW OF A HUMP USING RANSMODELING (RANS 모델링을 이용한 Hump 형상의 박리 유동에 대한 연구)

  • Lee, J.;Bae, J.H.;Jung, K.J.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • In this paper, separated flow characteristics is studied using the RANS(Reynold-averaged Navier-Stokes) modeling. The analysis is performed for the NASA's hump configuration which is the combination of a flat plate and a hump. This configuration was used in NASA's flow control workshop and it was one of validation cases for RANS and LES simulations. The separation occurs at the 65% of model length where a slot is positioned for the flow control. No flow control case and steady suction case are studied using RANS modeling. The Spalart-Allmaras model and the SST(Shear Stress Transport) model are applied and their accuracy are compared. To correlate CFD analysis with experimental data, the optimal boundary condition was investigated and the effect of a cavity around the slot is studied for the no flow case.

NUMERICAL STUDY ON THE WAKE OF A SINGLE MICRO VORTEX GENERATOR (Single micro Vortex Generator의 후류에 대한 수치적 연구)

  • Kim, G.H.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.494-499
    • /
    • 2011
  • One of the devices to prevent separated flow over a wing or a flap at high angle of attack is a vortex generator. In the present work, we numerically study the flow around a low-profile or micro vortex generator whose height is less than local boundary layer thickness which can delay separation with a minimum drag penalty owing to its very small wetted surface area. As a first step toward a parametric study to efficiently design this MVG flow control system, we simulate the flow around a single MVG on a flat plate. For the simulation, we employ OpenFOAM with Launder-Sharma ${\kappa}$-epsilon model. The analysis results are validated by comparing with experimental results of a rectangular MVG at an angle of attack of 10 degrees whose height is 20% of local boundary layer. Important results and aspects of this numerical study are discussed. We also simulate the flow around rectangular, triangular and trapezoidal MVGs and the results are compared

  • PDF

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

Control of Shock-Wave/Bound-Layer Interactions by Bleed

  • Shih, T.I.P.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 2008
  • Bleeding away a part of the boundary layer next to the wall is an effective method for controlling boundary-layer distortions from incident shock waves or curvature in geometry. When the boundary-layer flow is supersonic, the physics of bleeding with and without an incident shock wave is more complicated than just the removal of lower momentum fluid next to the wall. This paper reviews CFD studies of shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through a single hole, three holes in tandem, and four rows of staggered holes in which the simulation resolves not just the flow above the plate, but also the flow through each bleed hole and the plenum. The focus is on understanding the nature of the bleed process.

A Study of the Flow Phenomenon of Water in a Channel with Flat Plate Obstruction Geometry at the Entry

  • Khan, M.M.K.;Kabir, M.A.;Bhuiyan, M.A.
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.879-887
    • /
    • 2003
  • The flow in a parallel walled test channel, when obstructed with a geometry at the entrance, can be forward, reverse and stagnant depending on the position of the obstruction. This interesting flow phenomenon has potential benefit in the control of energy and various flows in the process industry In this experiment, the flat plate obstruction geometry was used as an obstruction at the entry of the test channel. The parameters that influence the flow inside and around the test channel were the gap (g) between the test channel and the obstruction geometry, the length (L) of the test channel and the Reynolds number (Re). The effect of the gap to channel width ratio (g/w) on the magnitude of the velocity ratio (V$\_$i/ / V$\_$o/ : velocity inside/ velocity outside the test channel) was investigated for a range of Reynolds numbers. The maximum reverse flow observed was nearly 20% to 60% of the outside velocity for Reynolds number ranging from 1000 to 9000 at g/w ratio of 1.5. The maximum forward velocity inside the test channel was found 80% of the outside velocity at higher g/w ratio of 8. The effect of the test channel length on the velocity ratio was investigated for different g/w ratios and a fixed Reynolds number of 4000. The influence of the Reynolds number on the velocity ratio is also discussed and presented for different gap to width ratio (g/w). The flow visualisation photographs showing fluid motion inside and around the test channel are also presented and discussed.