• Title/Summary/Keyword: Flow contour

Search Result 197, Processing Time 0.029 seconds

A Study on the Structure of Instantaneous Flow Fields of a Small-Size Axial Fan by Large Eddy Simulation (대규모 와 모사에 의한 소형축류홴의 순간유동장 구조에 대한 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.28-35
    • /
    • 2018
  • The large-eddy simulation (LES) was carried out to evaluate the instantaneous vector and vorticity profiles of a small-size axial fan (SSAF) at the operating point of full-flowrate. The downstream flow of the SSAF exhibits a shorter axial flow when not fully developed, especially the stronger vortex appears at the edge near the flow end. On the other hand, the downstream flow of the SSAF exhibits a longer axial flow, and the weaker vortex appears at the edge near the flow end when the flow is sufficiently developed. Moreover, in the downstream of the SSAF, a periodic and intermittent flow pattern appears at the edge showing the axial flow, and the instantaneous vorticity contour lines showing the form of a circle group are distributed at specific intervals from the downstream region of the blade tip, which is considered to be the result of the intermittency phenomenon influenced by the number of blades and the number of revolutions.

Heat transfer on two nearby circular cylinders (두 개의 원형 실린더 주위의 열전달)

  • Han, Tae-Heon;Yang, Kyung-Soo;Yoon, Dong-Hyeog;Lee, Kyong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2890-2895
    • /
    • 2007
  • Heat transfer on two identical nearby circular cylinders immersed in the uniform cross flow at Re = 100 and Pr = 7.0 was numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of heat transfer are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of heat transfer coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for averaged Nusselt number for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate heat transfer rates on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

HEAT TRANSFER ON TWO NEARBY CIRCULAR CYLINDERS (두 개의 원형 실린더 주위의 열전달)

  • Han, T.H.;Yang, K.S.;Yoon, D.H.;Lee, K.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.42-47
    • /
    • 2008
  • Heat transfer on two identical nearby circular cylinders immersed in the uniform cross flow at Re=120 and Pr=0.7 was numerically studied. We consider all possible types of arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of heat transfer are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of heat transfer coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for averaged Nusselt number for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate heat transfer rates on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

Engineering Applications of Jet Impingement Associated with Vertical Launching System Design

  • Hong, Seung-Kyu;Lee, Kwang-Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • In the course of missile system design, jet plume impingement is encountered in designing airframe as well as launchers, requiring careful investigation of its effect on the system. In the present paper, recent works on such topic are presented to demonstrate usefulness of CFD results in helping design the hardware. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. The main parameters are the ratio of the jet pressure to the ambient pressure and the distance between the nozzle and the wall. In the current application, the nozzle contour and the pressure ratio are held fixed, but the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. The same methodology is then applied to a complex vertical launcher system (VLS), capturing its flow structure and major design parameter. These applications involving jets are thus hoped to demonstrate the usefulness and value of CFD in designing a complex structure in the real engineering environment.

Numerical Simulation of Pipe Flow with an Obstacle by applying Turbulent Models (난류모형을 적용한 장애물이 있는 파이프내의 유동장 수치시뮬레이션)

  • Kwag Seung- Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.523-528
    • /
    • 2005
  • The flow analysis is made to simulate the turbulent flow in the pipe with an obstacle. The models used are k-$\epsilon$, k-$\omega$, Spalart-Allmaras and Reynolds. The structured grid is used for the simulation The velocity vector, the pressure contour, the change of residual along the iteration number and the dynamic head are simulated for the comparison of four example cases. For the analysis, the commercial code is used.

Establishment of GIS River Section for Water Flow Management (하천유량관리를 위한 GIS 하도단면 구축)

  • 최철관;김상호;배덕효;한건연
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.131-140
    • /
    • 2000
  • The systematic data management system in the area of river flow analysis has not yet constructed, even though the need is evident due to the complicated process of tremendous input/output data in the modeling study and the importance of visualization of spatial flow variation. The objectives of this study are to suggest the method for constructing the NGIS-based river database based on contour, river, elevation, boundary layers and river cross sections and to provide the algorithm for interpolating equi-distance river cross section points. The selected study area is the main Han River starting from Paldang dam site to Indogyo bridge. The constructed database will be useful for the scientific water flow management system in the study area.

  • PDF

Effects of Aperture Densitv Distribution on the Flow Through a Rock Fracture with Line-Source and Line-Collection

  • Park, Chung-Kyun;Hahn, Pil-So
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.485-495
    • /
    • 1998
  • Migration characteristics of tracers in a rock fracture in a case of line-source and line-collection was studied. The fracture plane was discretized into a square mesh to which variable apertures were assigned. The spatially varying apertures of a fracture were generated using a geostatistical method, based on a given aperture probability density distribution and a specified spatial correlation length. The flow potential and pressure at each node were computed. Calculations showed that fluid flow occurs predominantly through a few preferred paths. Hence, the large range of apertures in the fracture gives rise to flow channeling. The solute transport was calculated using a particle tracking method. The migration plumes of tracer between injection line and withdrawal line are displayed in contour plots. The elution curves are shown to be controlled by the aperture density distribution and to be insensitive to statistical realization and spatial correlation length.

  • PDF

A risk analysis of water courses and landslide using contour maps -Focusing on Mt. Seonggo in Cheonan City- (등고선지도를 이용한 수로 및 산사태 위험 분석 -천안의 성거산을 중심으로-)

  • Kim, Sae-Keun;Kim, Dong-Keun;Maeng, Seung-Ryol
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Due to the topographical and climatic features of Korea, there is a strong possibility of a landslide. Recently, many landslides, caused by the improper land development, frequently occured at the mountain area every summer. Cheonan has been recognized to be relatively safe against landslide, but with the increased risk factors, systematic analysis of the landslide is required. In this paper, the topographical features of Mt. Seonggo in Cheonan City were extracted using contour maps, and water courses and basin areas in heavy rain were computed using the results. Conclusively, Mt. Seonggo areas were relatively safe in the view points of the length of water courses and rain-inflow, but in case of some narrow areas, sustainedly observation was required. Meanwhile, a contour map is proper to analyze the risk of landslide in the 1'st level in that it is more cost effective than other types of digital map.

A Flow Analysis on Wing Shape of Cooling Fan at Automobile (자동차에서의 냉각팬의 날개 형상에 대한 유동해석)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.75-79
    • /
    • 2014
  • In this study, a flow analysis is carried out on the wing shape of cooling fan at automobile. By designing three kinds of Canival, Teracan and basic models with CATIA program, this analysis is done on the configuration of cooling fan with the same flow condition. It can be seen that the contour of flow velocity is changed due to the model of wing and the pressure distribution of fluid is changed due to the configuration or the area of wing. In case of cooling model of Teracan among three models, there is the most air flow and it can be thought to be most effective to cool the radiator. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Simulation of thermal distribution with the effect of groundwater flow in an aquifer thermal energy storage (ATES) system model (대수층 축열 에너지(ATES) 시스템 모델에서 지하수 유동 영향에 의한 지반내 온도 분포 예측 시뮬레이션)

  • Shim, Byoung-Ohan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having the effect of groundwater movement, understanding of thermohydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated by using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the direction of groundwater flow in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of east boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF