• Title/Summary/Keyword: Flow configuration

Search Result 1,146, Processing Time 0.03 seconds

A Convergence Study through Flow Analysis due to the Configuration of Automotive Air Breather (자동차 에어 브리더의 형상에 따른 유동해석을 통한 융합연구)

  • Oh, Bum Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.265-270
    • /
    • 2018
  • In this study, the flow analysis due to the car body configuration of air breather was carried out. As the resistance force whose flow affects car body has been studied, it is published that the electricity can be decreased. When the inner pressure of air breather is evaluated, there is the study of efficiency in order to raise the flow rate of inner body. At a total of five models, it is shown that the air resistance and pressure happen differently and the air pressure of side flow is changed. This study result was analyzed by using the analysis program of ANSYS, a study model was modelled using the CATIA V5 modelling program. It was investigated that the air flow rate was distributed uniformly as the curved surface of air breather configuration increases. It is thought as the most effective design method to design the air breather by considering the effect on the air resistance and flow. Also, through the design of the vehicle's airbrid configuration, the design of the product can incorporate a aesthetic sense into the design.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.

Tire Industry and Its Manufacturing Configuration

  • Lee, Young-Sik;Cpim;Lee, Jin-Kyu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.135-138
    • /
    • 2000
  • This paper is intended to propose what manufacturing configuration (manufacturing planning and shop floor control) is suitable for the tire industry. Basically tire-manufacturing process is mixed-products, parallel-disconnected-flow-shop. Both throughput time and cycle tine are very short, the variety of tires is very high, the setup time is long, shop floor data reporting requirements is high, and there are many equipments and people working. And with no exception, tire industry also now confronts increasing requirements of delivery conformance with the above peculiar characteristics of tire manufacturing and changing market environments, this paper suggests, weekly master scheduling with no MRP is desirable and traditional kanban is right selection for shop floor control/scheduling. This paper describes why this configuration should be, using the manufacturing engineering principles and some new insights like four primitives of parallel flow shop. Generally known that shop with high parallel-product-mix and long setup time isn't good candidate for kanban. The four primitives of parallel flow shop explain why kanban is also useful scheduling technique in that environment.

  • PDF

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

Distribution of Air-Water Two-Phase Flow in a Flat Tube Heat Exchanger (알루미늄 다채널 평판관 증발기 내 냉매분배)

  • Kim Nae-Hyun;Park Tae-Gyun;Han Sung-Pil;Lee Eung-Ryul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.800-810
    • /
    • 2006
  • The R-134a flow distribution is experimentally studied for a heat exchanger composed of round headers and 10 flat tubes. The effects of tube protrusion depth as well as mass flux, and quality are investigated, and the results are compared with the previous air-water results. The flow at the header inlet is stratified. For the downward flow configuration, the liquid distribution improves as the protrusion depth or the mass flux increases, or the quality decreases. For the upward configuration, the liquid distribution improves as the mass flux or quality decreases. The protrusion depth has minimal effect. For the downward configuration. the effect of quality on liquid distribution is significantly affected by the flow regime at the header inlet. For the stratified inlet flow, the liquid is forced to rear part of the header as the quality decreases. However, for the annular inlet flow, the liquid was forced to the frontal part of the header as the quality decreased. For the upward flow, the effect of the mass flux or quality on liquid distribution of the stratified inlet flow is opposite to that of the annular inlet flow. The high gas velocity of the annular flow may be responsible for the trend. Generally, the liquid distribution of the stratified inlet flow is better than that of the annular inlet flow. Possible explanation is provided from the flow visualization results.

Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prand시 Number Fluids

  • Lee, Kyu-Jung;Yasuhiro Kamotani;Simon Ostrach
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.764-775
    • /
    • 2001
  • Oscillartory thermocapillary flow of high Prandtl number fluids in the half-zone configuration is investigated. Based on experimental observations, one oscillation cycle consists of an active period where the surface flow is strong and the hot corner region is extended and a slow period where the opposite occurs. It is found that during oscillations the deformation of free surface plays an important role and a surface deformation parameter S correlates the experimental data well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow in the parametric ranges of previous ground-based experiments and shows that the flow is viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well with the numerical results. It is postulated that the oscillations are caused by a time lag between the surface and return flows. A deformation parameter S represents the response time of the return flow to the surface flow.

  • PDF

Comparison between CFD analysis and experiments according to various PEMFC flow-field designs (유로 형상 변화에 따른 CFD 해석 결과와 PEM 연료전지 성능 비교)

  • Lee, Kang-In;Park, Min-Soo;Lee, Se-Won;Chu, Chong-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.572-575
    • /
    • 2008
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in four kinds of flow-field designs without additional measurement equipment, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, the performance values of PEMFC according to the flow-field configurations were measured via a single cell test. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. So, the single serpentine configuration gave the highest performance. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.

  • PDF

Flow Visualization of Turbulent Flow around a Sphere (구(球) 주위 난류유동의 정량적 가시화)

  • Jang, Young-Il;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.50-53
    • /
    • 2005
  • The turbulent flow around a sphere was investigated in a streamwise meridian plane using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5,300 and PIV measurements in a circulating water channel at Re=7,400. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. In addition, the mean flow pattern extracted by particle tracing method in water tunnel at Re= 14,500 reveals two distinct comparable toroidal(not closed) vortices in the recirculation region. The mean velocity field measured using a PIV technique demonstrates the detailed wake configuration of close symmetric recirculation and near-wake configuration with two toroidal vortices, reversed velocity zone and vorticity contours.

  • PDF

Effect of Flow Inlet or Outlet Direction on Air-Water Two-Phase Distribution in a Parallel Flow Heat Exchanger Header

  • Kim, Nae-Hyun;Kim, Do-Young;Cho, Jin-Pyo;Kim, Jung-Oh;Park, Tae-Kyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.37-43
    • /
    • 2008
  • The air and water flow distributions are experimentally studied for a round header - ten flat tube configuration. Three different inlet orientation modes (parallel, normal, vertical) were investigated. Tests were conducted with downward flow configuration for the mass flux from 70 to $130kg/m^2s$, quality from 0.2 to 0.6, non-dimensional protrusion depth (h/D) from 0,0 to 0.5. It is shown that, for almost all the test conditions, vertical inlet yielded the best flow distribution, followed by normal and parallel inlet. Possible explanation is provided using flow visualization results.

Improvement of Lift Dump on a Fighter-Type Wing at Approach Condition

  • Hwang, Soo-Jung;Lee, Il-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.33-45
    • /
    • 2005
  • The 1/9-scale model of a fighter-type configuration was tested in the Micro-Craft 8ft ${\times}$ 12ft wind tunnel facility. An abrupt lift dump was found at a certain range of angle of attack under the pre-scheduled approach configuration. To avoid a probable unsatisfactory flight behavior due to the lift dump, various aerodynamic devices were suggested. Extensive tests applying the cutoff leading edge flaps, boundary layer fences, saw tooth and vortex generators were performed with flow visualization as well as force and moment measurements. Test results showed that the origin of the lift dump was caused by the secondary boundary layer flow separation generated from the strong interaction between wing and flap. Various solutions for avoiding the unfavorable feature were suggested with the merits and demerits.