• Title/Summary/Keyword: Flow conditioner

Search Result 172, Processing Time 0.026 seconds

A Study on the Refrigerant Characteristics of the HFC-l52a, and Azeotrope Mixed with $CF_3 I$ (HFC-152a와 HFC-1523에 $CF_3 I$를 혼합한 공비혼합냉매 특성에 관한 연구)

  • 이종인;하옥남;김재열;이연신;권일욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2001
  • To prevent green house effect and destruction of an ozone layer, an ozone destruction potential(OBP) must be zero and a refrigerant for low global warming potential(GWP) is needed. HFC-l34a, in which hydrogen is mixed instead of chlorine is a refrigerant used for automobile conditioners and its destruction potential is ecologically zero. However, it is not consid- ered as a perfect substitutive refrigerant as its GWP is high. It is studied refrigerant mixtures in which HFC-l52a and $CF_3 I$ in HFC-l52a with low GWP and zero ODP are mixed by experimentally and concluded as follows: 1) With the variation of speed of compressor outside temperature and flow rate, 7he heat of evaporator and compressor and coefficient of perfor- mance was varied, and influenced the air conditioner. 2) The pressure of evaporator was decreased with increasing the speed of compressor and the pressure of evaporator with the refrigerant HFC-l52a was higher 24% than that of azotrope refrigerant mixed with $CF_3 I$

  • PDF

An Experimental Study on the Effect of the Air Temperature on the Air-Side Heat-Transfer Coefficient and the Friction Factor of a Fin-and-Tube Heat Exchanger (외기 온도 변화가 핀-관 열교환기의 공기측 열전달계수와 마찰계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2017
  • In general, the air-side j and f factors of evaporators or condensers are obtained through single-design tests performed under air-dry and wet-bulb temperatures. Considering that the indoor or outdoor air temperatures vary significantly during the operation of an air conditioner, it is necessary to confirm that the experimentally-obtained j and f factors are widely applicable under variable air conditions. In this study, a series of tests were conducted on a two-row slit-finned heat exchanger to confirm the applicability. The results showed that, for the dry-surface condition, the changes of the tube-side water temperature, water-flow rate, and air temperature had virtually no effect on the air-side j and f factors. For the wet condition, however, the f factor was significantly affected by these changes; contrarily, the j factor is relatively independent regarding this change. The formulation of the possible reasoning is in consideration of the condensation behavior underneath the tube. The wet-surface j and f factors are larger than those of the dry surface, with a larger amount for the f factor.

A Study on Noise Identification of Compressor Based on Two Dimensional Complex Sound Intensity (Two Dimensional Complex Sound Intensity를 이용한 압축기 소음원 규명에 관한 연구)

  • 안병하;김영수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.83-92
    • /
    • 2000
  • Sound intensity method is well known as a visualization technique of sound field or sound propagation in noise control. Sound intensity or energy flux is a vector quantity which describes the amount and the direction of net flow of acoustic energy at a given position. Especially two dimensional sound intensity method is very useful in evaluating periodic characteristics and acoustic propagation mode of noise source. In this paper, we have studied the noise source Identification, acoustic sound field analysis, and characteristics of noise source of rotary compressor and scroll compressor for air conditioner using complex sound intensity method. Also we proposed a now method of time domain analysis which is used in evaluating of position of noise source in rotary and scroll compressor in this paper This paper presents the advantage, simplicity and economical efficiency of this method by analysing the characteristics of noise source with two dimensional complex sound intensity simultaneously.

  • PDF

An Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Sinusoidal Wave Fins (사인 웨이브 휜-관 열교환기의 공기측 성능에 관한 실험연구)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-367
    • /
    • 2004
  • The heat transfer and friction characteristics of the heat exchangers having sinusoidal wave fins were experimentally investigated. Twenty-nine samples having different waffle heights (1.5 mm and 2.0 m), fin pitches (1.3mm to 1.7mm) and tube rows (one to three) were tested. Focus was given to the effect of the waffle configuration (herringbone or sinusoidal) on the heat transfer and friction characteristics. Results show that the sinusoidal wave geometry provides higher heat transfer coefficients and friction factors than the herringbone wave geometry, and the difference increases as the number of row increases. The i/f ratios of the herringbone wave geometry, however, are larger than those of the sinusoidal wave geometry. Compared to the herringbone wave geometry, the sinusoidal wave geometry yielded a weak row effect, which suggests a superior heat transfer performance at the fully developed flow region. Possible explanation is provided considering the flow characteristics in wavy channels. Within the present geometric range, the effect of the waffle height on the heat transfer coefficient was not prominent. The effect of the fin pitch was also negligible. Existing correlations highly overpredicted both the heat transfer coefficients and friction factors. A new correlation was developed using the present data.

Effects of geometric conditions of blade on Performance of Axial Pan (익형의 기하학적 조건에 따른 축류팬의 성능에 관한 연구)

  • Ahn E. Y.;Kim J. W.;Jeongng E. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.25-29
    • /
    • 2005
  • Axial fan is used for the supplement of large amount of flows. Axial blowers show relatively high efficiency of the system. The present model of axial fan is for cooling a condenser in an air-conditioning unit that exhibits tendency toward compact size. In order to realize the compact model, the width of an axial blade should be cut down in axial distance. Main interest lies on the performance of the axial blowing system with blades having shorter chord length. One of the important design parameters for axial fan is the shape of the blades of it. Design of blades includes the cross-sectional shape and its dimension, including the chord length. We consider two types of blades; one is NACA airfoil with normal chord length and the other is with shortening chord length by $10\%$ of normal airfoil. Axial blower with the modified blades is essential for the compact model of an air-conditioner. The other design parameters are same in the two cases. Using a wind tunnel follows ASHRAE standards carries out evaluation of performance of the system. Detail of flows around the blades is prepared by velocity measurements using PIV. According to performance estimation, the axial blower with short chord blade show quite close to the performance results, including flow rate and pressure rise, of the standard one. The reason of the two similar results is that the flowpatterns depend on Reynolds number based on the chord length of a blade. In this investigation, the critical chord length is found, in which the flows near the airfoil are so unstable and the performance of the system is decreased. A series of figures is for the detail information on the flow.

  • PDF

Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation (사중극자 보정 Ffowcs Williams and Hawkings 방정식을 이용한 수중 익형 공동 유동소음에 대한 수치적 고찰)

  • Ku, Garam;Ryu, Seo-Yoon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.263-270
    • /
    • 2018
  • In most industry fields concerning external flow noise problems, the hybrid computational aeroacoustic techniques based on the FW-H (Ffowcs Williams and Hawkings) equation are widely used for its numerical efficiency. However, when the surface integral form of FW-H equation is used without volume quadrupole sources, it is known to generate significant non-physical noise in a certain case. Especially, in the case of a flow in which the tip vortex cavitation is formed in the distant downstream direction such as flow driven by an underwater propeller, the accuracy in noise prediction becomes poor unless it is not properly modelled. Therefore, in this study, the nonphysical acoustic waves caused by the surface integral form of FW-H equation is reduced by adding the quadrupole correction term. First, to verify the accuracy of the in-house code of FW-H equation, the noise by an axial fan used in the outdoor unit of air conditioner was calculated and compared with the results of ANSYS Fluent. In order to verify the effects of the quadrupole correction term, the noise prediction for isentropic vortex convection is performed and it is confirmed that the error is reduced by the quadrupole correction term. Finally, the noise prediction is performed for the flow field generated by the Clark-Y hydrofoil in underwater. It is confirmed that the error caused by the cavitation passing through the integral surface can be reduced by the quadrupole correction term.

Study on Improvement in Cooled Air Defense Gun System Including Closed Drum Basket (비개방형 포탑드럼바스켓을 가진 대공포체계의 냉방장치개선 연구)

  • Hwang, Boo Il;Lee, Dong Hui;Kim, Chi Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.109-113
    • /
    • 2015
  • Combat vehicles need an air-conditioning unit, although new combat systems tend to use an integrated system for heating, cooling, and ventilating. The specifications of an air-conditioning unit depend on the combat vehicle's purpose. It is difficult to send cooling air from the air-conditioning unit to a gun turret through the drum basket because the gun turret rotates and consists of a closed anti-aircraft shell magazine. In this study, we considered an air-conditioning unit for armored combat vehicle based on the special requirements and military specifications. We evaluated the performance of the air-conditioning unit despite the rotating gun turret through analysis and tests in terms of flow improvement compared to the previous model.

Comparison of Heat Transfer Performance and Pressure Drop of Fin-Tube and Aluminum Heat Exchangers (핀-튜브 열교환기와 알루미늄 열교환기의 전열성능과 압력강하 특성비교)

  • Chang, Keun-Sun;Lee, Hyun-Su;Kim, Jae-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.222-229
    • /
    • 2009
  • This study presents comparison of heat transfer and air side friction characteristics in a condenser condition of air conditioner between Louver fin-tube heat exchangers and aluminum parallel heat exchangers. All experiments are performed using an air-enthalpy type calorimeter, which is designed based on the method described in ASHRAE standards. The air velocities crossing the heat exchanger tubes are varied from 0.7 to 1.6 m/s with 0.3 m/s interval, maintaining air dry temperature and relative humidity at $20^{\circ}C$ and 60% respectively. Water temperature and flow rate inside the tube are $70^{\circ}C$ and 10 LPM, respectively. Experimental results show that the heat transfer performances of aluminum heat exchangers are 17-163% higher than those of Louver fin-tube heat exchangers based on the data per unit volume, mass, and heat transfer area, whereas air side pressure drops of aluminum heat exchangers are 19-81% lower.

Application of the Surface Cover Materials for Reduction of NPS Pollution from Actual Cultivation (실경작지 밭의 비점오염물질 저감을 위한 지표피복재 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Jung, Young Hun;Kum, Dong Hyuk;Won, Chul Hee;Lee, Su In;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.31-38
    • /
    • 2014
  • Four actual cultivations were prepared and a variety of soybean was cultivated. A H-flume, an automatic water level gauge and an automatic water sampler were installed at the outlet of each plot equipped for the measurement of flow rate and its water quality. The amount of rainfall of the study area in 2013 was measured as 975.6 mm which was much lower than the annual average rainfall of 1,271.8 mm, resulting in less occurrences in rainfall-runoff events. Rainfall-runoff events were occurred three times during the rainfall event of 4~5 July, 23 and 24 August. The characteristics of NPS pollution discharge of the plots and the reduction effect of the selected BMPs were analyzed during these events. The reduction effect of straw mat and soil amendments (Polyacrylamide (PAM) and Gypsum) on runoff ratio ranged between 38.2 and 92.9% (average 71.6%). The NPS pollution load reduced between 27.7 and 95.1% (average 70.0%) by the application of rice straw mat and soil conditioner when compared with that of control plot. Soybean yield (2,133.3 kg/ha) of the straw mat covered plots increased by 14.3% when compared with control (1,866.7 kg/ha). The effect of straw mat on the yield was not economically viable if the material and accompanying labor costs were considered. The data collected and analyzed on different soil textures and crops in this study are expected to be a fundamental reference for the expansion of the results to the application nationwide and the development of NPS pollution management policies.

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF