• Title/Summary/Keyword: Flow condition

Search Result 5,300, Processing Time 0.034 seconds

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor(II) - Loss Mechanism - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (II) - 손실구조 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.956-962
    • /
    • 2005
  • A three-dimensional computation was conducted to make a study about effects of the inlet boundary layer thickness on the total pressure loss in a low-speed axial compressor operating at the design condition ($\phi=85\%$) and near stall condition($\phi=65\%$). Differences of the tip leakage flow and hub corner-stall induced by the inlet boundary layer thickness enable the loss distribution of total pressure along the span to be altered. At design condition, total pressure losses for two different inlet boundary layers are almost alike in the core flow region but the larger loss is generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total pressure loss fer the thick inlet boundary layer is found to be greater than that for the thin inlet boundary layer on most of the span except the region near hub and casing. Total pressure loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the inlet boundary layer thickness on the loss structure are analyzed in detail.

Optimal Condition of Specific Impulse for a Liquid Rocket Engine with Film Cooling (막냉각이 적용된 액체로켓엔진의 비추력 최적조건)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • An analysis has been conducted of the optimal condition to maximize the specific impulse for a liquid rocket engine with film cooling. The present engine performance has been compared with the published conceptual design to be verified satisfactorily accurate. The optimal combination of film coolant flow rate and the regenerative cooling capacity has been found for maximum specific impulse. The optimal fuel pump pressure increases and the optimal film coolant flow decreases for a larger thrust engine. Higher turbine inlet temperature increases both the fuel pump pressure and the film coolant flow rate as the optimal condition. The coking temperature has the same qualitative effect as the turbine inlet temperature.

  • PDF

Characteristics of the Inlet with the Pressure Perturbation in the Ramjet Engine

  • Shin, Dong-Shin;Kang, Ho-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.286-294
    • /
    • 2006
  • Flows in a ramjet inlet is simulated for the study of the rocket-ramjet transition. The flow is unsteady, two-dimensional axisymmetric, compressible and turbulent. Double time marching method is used for the unsteady calculation and HLLC method is used as a higher order MUSCL method. As for turbulent calculation, $\kappa-\omega$ SST model is used for more accurate viscous calculations. Sinusoidal pressure perturbation is given at the exit and the flow fields at the inlet is studied. The cruise condition as well as the ground test condition are considered. The pressure level for the ground test condition is relatively low and the effect of the pressure perturbation at the combustion chamber is small. The normal shock at the cruise condition is very sensitive to the pressure perturbation and can be easily detached from the cowl when the exit pressure is relatively high. The sudden decrease in the mass flux is observed when the inlet flow becomes subcritical, which can make the inlet incapable. The amplitude of travelling pressure waves becomes larger as the downstream pressure increases, and the wavelength becomes shorter as Mach number increases. The phase difference of the travelling perturbed pressure wave in space is 180 degree.

DEVELOPMENT OF A 2-D UNSTEADY FLOW SIMULATION CODE USING CARTESIAN MESHES (직교격자를 이용한 2차원 비정상 유동해석 코드 개발)

  • Jung, Min-Kyu;Lee, Jae-Eun;Park, Se-Youn;Kwon, Oh-Joon;Kwon, Jang-Hyuk;Shin, Ha-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.116-120
    • /
    • 2009
  • A two-dimensional unsteady inviscid flow solver has been developed for the simulation of complex geometric configurations on adaptive Cartesian meshes. Embedded condition was used for boundary condition and a predictor-corrector explicit time marching scheme was used for time-accurate numerical simulation. The Cartesian mesh generator, which was previously developed for steady problem, was used grid generation for unsteady flow. The solver was based on ALE formulation for body motion. For diminishing the effects of cut-cells, the cell merging method was used. Using cell merging method, it was eliminated the CFL constraints. The conservation problem, which is caused cell-type variation around region swept by solid boundary, was also solved using cell merging method. The results are presented for 2D circular cylinder and missile launching problem.

  • PDF

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Formation characteristics of gas hydrate in sediments (퇴적층에서의 가스 하이드레이트 생성 특성)

  • Lee, Jae-Hyoung;Lee, Won-Suk;Kim, Se-Joon;Kim, Hyun-Tae;Huh, Dae-Gi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.630-633
    • /
    • 2005
  • Some gases can be formed into hydrate by physical combination with water under appropriate temperature and pressure condition. Besides them, it was found that the pore size of the sediments can affect the formation and dissociation of hydrate. In this study, formation temperatures of carbon dioxide and methane hydrate have been measured using isobaric method to investigate the effects of flow rates of gases on formation condition of hydrate in porous rock samples. The flow rates of gases were controlled using a mass flow controller. To minimize Memory effect, system temperature increased for the dissociation of gas hydrates and re-established the initial saturation. The results show that the formation temperature of hydrate decreases with increasing the injection flow rate of gas. This indicates that the velocity of gas in porous media may act as kinds of inhibitor for the formation of hydrate.

  • PDF

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • A numerical simulation on the heat transfer and flow field was carried out to improve the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. Based on this study, it is noted that the present geometry of the heat exchanger causes poor heat transfer since the air inside shell does not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle, but it causes the increasement of the pressure drop. In this paper, the effects of the location and size of the sealing strips and flow rate through the heat exchanger on the heat transfer and pressure drop are studied.

A Study on the Impronement on the Response of Solenoid-Flow control type ABS Modulator (솔레이노-유량제어 방식 ABS의 응답성 향상에 관한 연구)

  • 송창섭;김형태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.569-572
    • /
    • 1995
  • In this study, a hydraulic modulator of solenoid-flow type ABS, the master sylinder, and the wheel cylinder are modeled and simulated for increasing pressure characteristics of the brake. Response can be predicted by external force of the the master sylinder and pulses to the solenoid valve as input. For a demonstration of simulation result, experiment is done under the same condition as simulation condition after experimental apparatus of 1/4 car model is constructed. When factors of flow control valve are changed, the effect of each factor to response, how to improve response, and the most critical factors are considered from simulated result of time constant.

  • PDF

Study on Heat Transfer around a Circular Jet Ejected into a Supersonic Flow (초음속 유동내에 분사되는 원형 제트 주위에서의 열전달 연구)

  • Yi, Jong-Ju;Yu, Man-Sun;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.353-356
    • /
    • 2006
  • Convective heat transfer coefficient was measured around a secondary jet ejected into the supersonic flow field. Wall temperature distribution was measured on the surface, which the constant heat flux condition is applied. According to jet to freestream momentum ratio, the secondary flow was penetrated into the supersonic flow field. During the test, two dimensional thermal image of a wall temperature is taken by an infra-red camera. Experiments were performed under the testing condition of freestream Mach number of about 3, stagnation pressure of 630 kPa and Reynolds number of $3.0{\times}10^6$.

  • PDF

Kinematics of the Nonsteady Axi-symmetric Ideal Plastic Flow Process

  • Alexandrov, S.;Lee, W.;Chung, K.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.209-212
    • /
    • 2004
  • A nonsteady axi-symmetric ideal flow solution is obtained here. It is based on the rigid perfect-plastic constitutive law with the Tresca yield condition and its associated flow rule. The process is to deform a circular solid disk into a spherical shell of prescribed geometry. It is assumed that there are no rigid zones and friction stresses. The solution obtained provides the distribution of kinematic variables and involves one undetermined function of the time. This function can be in general found by superimposing an optimality criterion.