• 제목/요약/키워드: Flow condition

검색결과 5,295건 처리시간 0.028초

구심터빈의 노즐 내부 유동에 대한 시험 연구 (An Experimental Study on Flow in the Nozzle of a Radial Turbine)

  • 강정식;임병준;안이기
    • 한국유체기계학회 논문집
    • /
    • 제13권1호
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

환상이중원관에서 R-113의 비등열전달에 관한 연구 (A Study on the Boiling Heat Transfer of R-113 in a Concentric Annular Tube)

  • 김명환;김철환;오철;윤석훈;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권5호
    • /
    • pp.12-23
    • /
    • 1994
  • The two-phase flow is observed in power plants, chemical process plants, and refrigeration systems etc., and it is very important to solve the heat transfer mechanism of a boiler, an automic reactor, a condenser and various types of evaporators. Recently, the problem of two phase heat transfer is braught up in many regions with development of energy saving technique. In flow boiling system it is necessary to store data in each condition because the heat transfer characteristics of flow boiling region vary by the change of flow pattern and the magnetude of heat flux to tube length, and be subtly affected by the flow and heating condition. So basic study for knowing flow pattern in heat transfer region and the relation between heat transfer characteristic and flow condition is desired to accumulate data in wide variety of liquid and flow system in the study of heat transfer of two phase flow. In this study R-113 was selected as working fluid whose properties were programmed by least square method, and experiment was conducted in the region of mass flow $1.628{\times}10^6$~$4.884{\times}10^6$/kg/$m^2$hr with inlet subcooling 10~3$0^{\circ}C$, sustaining test section inlet pressure to 1.5kg$_f$/$cm^2$abs.

  • PDF

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

분지관 내 물체 주위 맥동류에 대한 CFD 해석 (CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE)

  • 황도연;유성수;이명수;한병윤;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

고분자 전해질 연료전지 멀티 스택 시스템의 수소극 흐름방향에 따른 습도분포 및 성능변화 (Humidity Distribution and Performance Variation of a PEMFC Multi Stack System According to the Direction of Anodic Supply)

  • 이용택
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.143-148
    • /
    • 2018
  • In this study the performance and humidity variation for 2 unit cells connected in series were experimentally measured. The relative flow direction of hydrogen and air was changed from parallel flow to counter flow. Internal humidity distribution was then measured by 5 embedded sensors on each channel. In all experimental conditions, the former unit cell showed a better performance and the gap is noted to be higher when counter flow is applied. The performance was noted to be higher at high humidification case in the parallel flow. However, in the counter flow, the difference of performance according to the humidification is negligible. Hydrogen and air are discharged from the PEMFC unsaturated with water vapor at parallel flow/low humidification condition, which explains lower performance of the PEMFC than other conditions. The humidities in hydrogen and air streams of counter flow were noted to increase rapidly even at low humidification condition and the consequential even hydration of membrane is the reason of higher performance.

연소실 경계조건 변화에 따른 핀틀 노즐의 동특성 연구 (Dynamic Characteristics of Pintle Nozzle about Changes of Chamber Boundary Condition)

  • 정기연;강동기;이대연;최재성
    • 한국추진공학회지
    • /
    • 제22권5호
    • /
    • pp.22-31
    • /
    • 2018
  • 본 연구에서는 연소실 경계조건 변화에 따른 핀틀 노즐의 동특성을 파악하기 위해 수치해석을 수행하였다. 핀틀의 움직임을 모사하기 위해 노즐과 핀틀의 영역을 분리하여 격자를 생성하고 중첩격자기법을 사용하였다. 연소실의 경계조건은 일정질량유량과 추진제 연소속도 조건을 적용하여 결과를 비교하였다. 일정질량유량조건은 입구에 유입되는 질량유량을 정량적으로 변화시켜 연소실의 압력과 추력 특성을 파악하였다. 추진제 연소속도 조건은 연소실 압력에 의한 연소속도 식을 고려하였다. 추진제 연소속도 조건은 일정질량유량조건과는 다른 비선형적 유량변화를 나타내며, 작은 유량으로도 큰 연소실 압력변화를 가져온다.

금망임펠러를 이용한 교반조에서의 교반소요동력 특성 (Characteristic of Power Consumption in Agitated Vessel Using Wire Gauge Impeller)

  • 김문갑;이영세
    • 한국산업융합학회 논문집
    • /
    • 제14권2호
    • /
    • pp.73-78
    • /
    • 2011
  • Power consumption for wire gauge impeller in cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation were obtained agitation power input of WM4 at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region. Also the compared with effect of impeller diameter and blade width on agitation power input at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region.

섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석 (Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet)

  • 장수학;김석호;백남주;김이곤
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.163-168
    • /
    • 1991
  • 본 연구에서는 여러가지의 성형조건에서 미끄름을 지배하는 상수를 측정하고, 유동 선단(flow front)에 미치는 이 상수의 영향을 검토한다. 또 측정된 상수를 가 지고 사각형 및 중공 원형 평판 압축성형에 대해서 2차원 유한 요소해석을 하고 실험 결과와 비교 검토한다.

선형 압축기 익렬에서 발생하는 익단 누설 와류내의 레이놀즈 응력 분포 (I) -입구 유동각 변화의 영향- (Distribution of the Reynolds Stress Tensor Inside Tip Leakage Vortex of a Linear Compressor Cascade (I) - Effect of Inlet Flow Angle -)

  • 이공희;박종일;백제현
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.902-909
    • /
    • 2004
  • A steady-state Reynolds averaged Navier-Stokes simulation was conducted to investigate the distribution of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) at a constant tip clearance size of $1\%$ blade span were considered. Classical methods of solid mechanics, applied to view the Reynolds stress tensor in the principal direction system, clearly showed that the high anisotropic feature of turbulent flow field was dominant at the outer part of tip leakage vortex near the suction side of the blade and endwall flow separation region, whereas a nearly isotropic turbulence was found at the center of tip leakage vortex. There was no significant difference in the anisotropy of the Reynolds normal stresses inside tip leakage vortex between the design and off-design condition.