• Title/Summary/Keyword: Flow condensation heat transfer

Search Result 141, Processing Time 0.025 seconds

An Experimental Investigation of the Interfacial Condensation Heat Transfer in Steam/water Countercurrent Stratified Flow in a Horizontal Pipe

  • Chu, In-Cheol;Yu, Seon-Oh;Chun, Moon-Hyun;Kim, Byong-Sup;Kim, Yang-Seok;Kim, In-Hwan;Lee, Sang-Won
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.565-570
    • /
    • 1998
  • An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within $\pm$15%

  • PDF

Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate (평판의 층류 막응축에서 복합열전달에 대한 근사해)

  • Lee Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.

Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers (2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF

Influence of the Inclination Angle and Liquid Charge Ratio on the Condensation in Closed Two-Phase Thermosyphons with Axial Internal Low-Fins

  • Cho, Dong-Hyun;Han, Kyu-il
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.422-428
    • /
    • 2003
  • This study concerns the performance of the heat transfer of the thermosyphons having 60, 70, 80. 90 axial internal low-fins in which boiling and condensation occurr. Water, HCFC-141b and CFC-11 have been used as the working fluids. The operating temperature, the liquid charge ratio and the inclination angle of thermosyphons have been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from experimental results. The experimental results have been assessed and compared with existing theories. As a result of the experimental investigation, it was found that the maximum heat flow rate in the thermosyphons is dependent upon the liquid charge ratio and inclination angle. A relatively high rate of heat transfer has been achieved by the thermosyphon with axial internal low-fins. The inclination of a thermosyphon has a notable influence on the condensation. In addition, the overall heat transfer coefficients and the characteristics at the operating temperature are obtained for the practical applications.

Measurement of Single Phase and Condensation Heat Transfer Coefficients of Ammonia in a Horizontal Tube (암모니아의 수평관내 단상 및 응축 열전달계수의 측정)

  • 백영진;장영수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.561-569
    • /
    • 2000
  • Single phase and condensation heat transfer characteristics of ammonia in a horizontal tube have been investigated experimentally The horizontal test section is composed of smooth SUS316 tube for refrigerant flow, surrounding annulus for water flow, and temperature and Pressure measuring sensors. For single phase test, subcooled ammonia mass flux was varied from 320 to 501 kg/mrs and temperature was varied from 18 to $47^{\circ}C$. For condensation test, mass flux and saturation temperature were varied from 86 to 128 kg/$m^2$s and 34 to $47^{\circ}C$, respectively. The equations of Gnielinski Soliman et al., Traviss et at., Cavallini and Zecchin, Shah, Chen et al., Tandon et al., and Chilli and Anand were compared with the experimental data. New correlations are proposed based on the experimental results and the absolute mean deviation of the experimental data becomes 1.0% for single phase test and 4.9% for condensation test.

  • PDF

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow (튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향)

  • Sun Youb Lee;Cong-Tu Ha;Jae Hwa Le
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

Prediction of condensation heat transfer coefficients inside horizontal tube in annular flow regime (환상유동 영역에서의 수평관내 응축 열전달계수 예측)

  • Kwak, Kyung-Min;Bae, Chul-Ho;Jung, Mo;Lee, Sang-Chun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.732-742
    • /
    • 1998
  • Prediction method for heat transfer coefficients in a horizontal smooth tube with forced convection condensation is proposed. In this paper, the analogy between momentum and heat transfer was applied to an annular flow regime and the logarithmic velocity distribution is applied to describe the velocity profile within the liquid film. Prediction results are compared with those of experimental ones. The test refrigerants are R113, R22, R134a, R407C(R33/R125/R134a, 23/25/52 wt%), R410A(R32/R125, 50/50 wt%) and R134a+R123(R134a/R123, 85.5/14.5 wt%) which are used under operating conditions in a condenser of air-conditioner. The proposed prediction method shows good agreement with experimental data within$\pm 30%$ for pure refrigerants. For the mixture refrigerants including the ternary mixture refrigerant R407C, condensation heat transfer from this study are higher than those from experiments. By correcting the constant in two-phase frictional multiplier, the predicated heat transfer coefficients become similar to the experimental results.

  • PDF

Interfacial Condensation Heat Transfer for Countercurrent Steam-Water Stratified Flow in a Circular Pipe

  • Chu, In-Cheol;Chung, Moon-Ki;Yu, Seon-Oh;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.142-156
    • /
    • 2000
  • An experimental study of steam condensation on a subcooled thick water layer (0.018 ~0.032 m) in a countercurrent stratified flow has been performed using a nearly horizontal circular pipe. A total of 103 average interfacial condensation heat transfer coefficients were obtained and parametric effects of steam and water flow rates and the degree of subcooling on condensation heat transfer were examined. The measured local temperature and velocity distributions in the thick water layer revealed that there was a thermal stratification due to the lack of full turbulent thermal mixing in the lower region of the water layer Two empirical Nusselt number correlations, one in terms of average steam and water Reynolds numbers, and the water Prandtl number, and the other in terms of the Jakob number in place of the Prandtl number, which agree with most of the data within $\pm$ 25%, were developed based on the bulk flow properties. Comparisons of the present data with existing correlations showed that the present data were significantly lower than the values predicted by existing correlations.

  • PDF

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

Flow Condensation Heat Transfer Coefficients of R22, R410A and Propane in Aluminum Multi-Channel Tube (알루미늄 다채널 평판관내 R22, R410A, Propane의 흐름 응축 열전달 성능 비교)

  • Park Ki-Jung;Lee Ki-Young;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.649-658
    • /
    • 2005
  • Flow condensation heat transfer coefficients (HTCs) of R22, R410, Propane (R290) were measured inside a horizontal 9 hole aluminum multi-channel flat tube. The main test section in the refrigerant loop was made of a 0.53m long multi-channel flat tube of hydraulic diameter of 1.4 mm. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in qualities of $0.1\~0.9$ at mass flux of $200\~400kg/m^2s$ and heat flux of $7.3\~7.7kW/m^2$ at the saturation temperature of $40^{\circ}C$. All popular heat transfer correlations in single-phase subcooled liquid flow and flow condensation originally developed for large single tubes predicted the present data of the multi channel flat tube within $25\%$ deviation when effective heat transfer area was used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Hence, a modified correlation based on the present data was proposed which could be applied to small diameter tubes with effective heat transfer area. The correlation showed a mean deviation of less than $20\%$ for all data.