• Title/Summary/Keyword: Flow channel design

Search Result 517, Processing Time 0.032 seconds

FARE Device Operational Characteristics of Remote Controlled Fuelling Machine at Wolsong NPP

  • I. Namgung;Lee, S.K.;Kim, Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.468-481
    • /
    • 2002
  • There are 4 CANDU6 type reactors operating at Wolsong site. For fuelling operation of certain fuel channels (with flow less than 21.5 kg/s) a FARE flow Assist Ram Extension) device is used. During the refuelling operation, two remote controlled F/Ms (Fuelling Machines) are attached to a designated fuel channel and carry out refuelling job. The upstream F/M inserts new fuel bundles into the fuel channel while the downstream F/M discharges spent fuel bundles. In order to assist fuelling operation of channels that has lower coolant How rate, the FARE device is used instead of F/M C-ram to push the fuel bundle string. The FARE device is essentially a How restricting element that produces enough drag force to push the fuel bundle string toward downstream F/M. Channels that require the use of FARE device for refuelling are located along the outside perimeter of reactor. This paper presents the FARE device design feature, steady state hydraulic and operational characteristics and behavior of the device when coupled with fuel bundle string during fuelling operation. The study showed that the steady state performance of FARE device meets the design objective that was confirmed by downstream F/M C-ram force to be positive.

Effects of the Floor Pannel on Flows in a Vertical Laminar Flow Type Clean Room (수직 층류형 클린룸의 바닥 패널이 실내기류에 미치는 영향)

  • Kang, S.H.;Jeon, W.P.;Oh, M.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-315
    • /
    • 1990
  • Uniformity of velocity is quite important design points of a vertical laminar flow type clean room. In the present paper, flows in a room with a bottom pannel are numerically simulated by using a low-Reynolds number $k-{\epsilon}$ model, and a new flow model of the pannel are suggested. Resistance coefficient of the pannel and size of the exhaust channel show considerable effects on flow pattern and uniformity of flow on the bottom. Reflection coefficient also has important roles. A possibility to obtain the uniform and unidirectional flow is tested by adjusting the distribution of resistance coefficient of the pannel. Such a numerical simulation of the flow will be a good method to get optimun design parameters.

  • PDF

Numerical and experimental study of the flow characteristics around two vertical cylinders (2개의 수직실린더 주위 유동 특성 연구)

  • Shin Young-S.;Jo Chul-H.;Jeong Uh-C.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.213-216
    • /
    • 2002
  • In this paper, flow patterns around two vertical cylinders were investigated numerically and experimentally Flow patterns between cylinders are very complex and interative. Changing gaps between cylinders the flow patterns are measured and numerically studied at a fixed comming velocity. The experiment has beeen conducted in circulating water channel with PIV system and manometer, and numerical analysis has been made by F.D.M. and multi block method. The results can be applied in the understanding and design of multiple pile array structures.

  • PDF

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques (신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계)

  • Shin, Dong-Yoon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

A Numerical Analysis for the Performance Improvement of a Channel Heat Exchanger (채널형 열교환기의 성능향상에 관한 수치해석)

  • Jang, Byung-Hyun;Kim, Si-Peom;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • The shell & tube heat exchanger is used throughout various industries because of its inexpensive cost and handiness when it comes to maintenance. However, it has many design elements such as the location and the shape of inlet and outlet, the numbers of tubes and baffles, etc. Also, the flow within the shell and the heat transfer are complex. This paper is performed numerical analysis to evaluate capabilities of difference in temperature and pressure drop, which are the performance of channel heat exchanger, one of different types of shell & tube exchanger. Also, factors that affect the performance of channel heat exchanger were selected through design of experiment along with key factors.

The Experimental Study for Variance of Depositation Due to Sediment Volume Concentration of Debris Flow (토석류의 토사체적농도에 따른 퇴적 특성 변화에 관한 실험 연구)

  • Choi, Youngdo;Kim, Sungduk;Lee, Hojin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of this study is to investigate the sedimentation area and runout distance in the downstream when debris flow occurred on a mountain slope through an experimental performance. Super typhoons and torrential rains caused by climate change cause large-scale debris flow disasters in the downstream areas of mountainous areas, mainly where sediments are deposited and flowed downstream. To analyze the characteristics of the sediment deposited downstream, the disposition area and runout distance were investigated through experiments in the case of a straight channel and channel with berm, respectively. As experimental conditions, changes in sediment volume concentration and channel slope, and channel with or without berm, reduction rates in sedimentation area and runout distance were investigated. In the straight channel, the steeper the channel slope and the lower the sedimentation concentration, the sedimentation area and runout distnace were increased. In a channel with berm, the runout distance and sediment area increased as the slope became steeper and the sediment area decreased.

A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building (건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구)

  • PARK, DONGHWAN;SOHN, YOUNG-JUN;CHOI, YOON-YOUNG;KIM, MINJIN;HONG, JONGSUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

A numerical study for optimizing the thermal and flow performance in the channel of plate heat exchanger with dimples (딤플이 있는 판형 열교환기 관내측 열유동 최적화)

  • 이관수;시종민;정길완
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.700-708
    • /
    • 1999
  • The optimum dimple shape and arrangement in the channel of a plate heat exchanger with staggered dimples are proposed in this study. Four important geometric parameters are selected as design variables, the pressure drop and heat transfer characteristics are examined in the channel of plate heat exchangers. The optimization is accomplished by minimizing the global criterion function which consists of the correlations of Nusselt number and pressure drop. The optimum geometric parameters were found at the dimensionless dimple distance (L) of 0.272, the dimensionless dimple angle ($\beta$) of 0.44, the dimensionless dimple volume (V) of 0.106 and the dimensionless dimple pitch (G) of 0.195. It is found that the heat transfer and pressure drop of the optimum model are increased by approximately 227.9% and 32.9%, respectively, compared to those of the base model.

  • PDF

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF

Pre-processing for the Design of Micro-fluid Flow Sensing Elements

  • Kim Jin-Taek;Pak Bock-Choon;Lee Cheul-Ro;Baek B.J.
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.22-26
    • /
    • 2006
  • A simple finite element analysis is performed to simulate the thermal characteristics of a micro sensor package with thin film heater embedded in the glass wall of a micro-channel. In this paper, Electric characteristics of ITO sputtered heater were presented in this study, which can be used as a map of heater design in the range of available system temperature. The effects of thermo-physical properties of materials, geometrical structure and boundary condition on the thermal performance are also investigated. Finally, the design of micro-flow induced thermal sensor that is capable of measuring fluid flow with a lower flow detection limit of approximately 24pL/s is presented.