• Title/Summary/Keyword: Flow blockage characteristics

Search Result 62, Processing Time 0.069 seconds

Thermo-Flow Analysis of Offset-Strip Fins according to Blockage Ratio (옵셋 스트립 휜의 막음비에 따른 열 및 유동 분석)

  • Kim, Min-Soo;Yu, Seung-Hwan;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1084-1089
    • /
    • 2009
  • A numerical study of thermo-flow characteristics is presented to determine correlations of pressure drop and heat transfer for offset-strip fins. As a blockage ratio increased, previous correlations underestimate f values in laminar and turbulent regimes, and overestimate j values in laminar regime. Therefore, new correlations, which are applicable to fins with blockage ratios more than 15%, are presented.

  • PDF

Numerical Study on Uniform-Shear Flow Over a Circular Cylinder (원형실린더를 지나는 균일전단 유동에 관한 수치연구)

  • Choi, Won-Ho;Kang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-150
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. Numerical simulations using the immersed boundary method are performed for the ranges of $50{\le}Re{\le}160,\;K{\le}0.2$, and B=0.1 and 0.05 where Re, K and B are the Reynolds number, the non-dimensionalized velocity gradient and the blockage ratio, respectively. Results show that the flow depends significantly on B as well as Re and K. It is found, especially, that the blockage effect accounts for some causes of apparent discrepancies among previous studies on the flow. With increasing K, the vortex shedding frequency and the mean drag stay nearly constant or slightly decrease whereas the mean lift, acting from the higher-velocity side to the lower, increases linearly. Flow statistics as well as instantaneous flow fields are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

Numerical Study on the Flow Characteristics with a Vane-type Static Mixer in the Diesel Exhaust Systems (Vane-type Static Mixer에 의한 디젤차량 배기관 내의 유동 특성에 관한 연구)

  • Kang, Kyoung-Nam;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.36-43
    • /
    • 2012
  • In this work the mixing and flow characteristics of a vane-type static mixer were investigated numerically for the reduction of NOx in the SCR-system of the diesel engines. The mixer was located in the 57 times pipe diameter away from the inlet. The analysis were performed by changing such various parameters as vane shape, angles, blockage ratio and location of the vane. The flow structure through the mixer was characterized by uniformity index and pressure drop. The results show that uniformity index and pressure coefficient are substantially influenced by the vane shape, angle, blockage ratio and position of the vane of the mixer.

Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller (원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구)

  • 김세진;김동원;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.151-157
    • /
    • 1999
  • In this study, tile characteristics of three dimensional flow fields in centrifugal flump impeller are investigated by numerically. Detailed analysis and understanding of flow field in centrifugal pump are very important to predict performance of components. The three dimensional viscous fluid flow in centrifugal pump is distingushed isentropic process region from irreversible process region by wall shear effect, secondary flow, centrifugal and Coriolis forces, variation of boudary layers. Development of low momentum region by viscous fluid flow in the centrifugal impeller causes stall and blockage which is irreversible process region, and resulting in decrease of the performance and efficiency of centrifugal pump. Especially, the result is that Coriolis and centrifugal forces are most powerful factors which are increasing the irreversible region.

  • PDF

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.

Effect of Well Curvature on Curved Duct Flows

  • Hong Seung-Gyu;Heo Gi-Hun;Lee Gwang-Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-135
    • /
    • 1997
  • Effect of wall curvature on flow characteristics is studied for mildly and strongly curved duct flows. The ducts are S-shaped, and the flow is partially blocked at the rear of the downstream. The presence of blockage in combination with curvature generates secondary flows on the concave surface; the magnitude of the secondary flow being dependent on the degree of wall curvature. Objectives are to compare the flow structures for mild and strong cases and to illuminate the changes in flow structure as the flow turns. Sensitivity on numerical solutions due to different inflow boundary conditions is also examined.

  • PDF

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

A Study on the Secondary Atomization Characteristics of Liquid Fuel in the Perforated Throttle Valve (다공 스로틀 밸브에서의 액체 연료의 2차 미립화 특성에 관한 연구)

  • Lee, C.S.;Lee, K.H.;Cho, B.O.;Oh, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • In a fuel injection engine, atomization of liquid fuel and mixture formation process has influenced(or affected) directly on the engine performance and pollutant emission. In this study, the characteristics of fuel spray and the behaviors of secondary atomization developed at the downstream of the valves were investigated using an image processing method. Solid and perforated valves are chosen in order to evaluate the valve performance in terns of air flow rate, valve opening angle and valve shape. Experimental results clearly indicate that the spray atomization quality can be improved by increasing the perforated rat io and the blockage rat io in the perforated valve, the characteristics of spray atomization is improved by using the perforated valve with high perforated rat io and blockage ratio.

  • PDF

Changes of Blood Flow Characteristics due to Catheter Obstruction during the Coronary Angioplasty

  • Suh, Sang-Ho;Roh, Hyung-Woon;Kwon, Hyuck-Moon;Lee, Byoung-Kwon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 2004
  • Catheters are used to measure translesional pressure gradients in the stenosed coronary arteries. Uses of catheters during coronary angioplasty cause flow obstructions. A narrowed flow cross section with catheter effectively introduced a tighter stenosis than the enlarged residual stenoses after balloon angiplasty. Catheters in blood vessels cause pressure gradient rise and blood flow drop during the measurements. In this study, three dimensional computer simulations are conducted to investigate the flow blockage effects due to the catheter obstructions during the coronary angioplasty. The computer simulation models are generated by the data, which are measured by coronary angiogram, and the blood is treated as non-Newtonian fluid. The velocity, pressure, and wall shear stress variations are observed for the estimate of damages of blood vessel. This study is also extended to investigate the effects of stenotic vessel size, and shape and catheter size and location.

  • PDF

A Numerical Study on Flow Characteristics of Second Throat Exhaust Diffuser with Shock Cone Shape (램 구조물 형상에 따른 이차목 디퓨저의 유동 특성에 관한 수치적 연구)

  • Yu, Seongha;Jo, Seonghwi;Kim, Hongjip;Ko, Youngsung;Na, Jaejeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.346-351
    • /
    • 2017
  • A numerical study has been conducted to investigate flow characteristics of STED with ram structure shape. By increasing the attack angle of shock cone, vacuum pressure is increased because of oblique shock at ram structure and separation point moved to the downstream of the second throat. By increasing blockage ratio, expansion wave angle is increased at ram structure while vacuum pressure is constant.

  • PDF