• Title/Summary/Keyword: Flow attack angle

Search Result 391, Processing Time 0.026 seconds

Chine Shape Optimization for Directional Stability at High Angle of Attack (고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계)

  • Park, Hyeong-Uk;Park, Mee-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.825-834
    • /
    • 2008
  • Nose chine shape optimization study has been performed to maximize the directional stability at high angle of attack supersonic flow. Various chine shapes are generated using super ellipse equation. By numerically investigating the directional stability characteristics of those shapes, the baseline configuration for the shape optimization has been selected using the three-dimensional Navier-Stokes equations. The configuration is represented by the NURBS curves which can adjust the surface geometry by the control points. The response surfaces are constructed to obtain optimum shape which has high directional stability characteristics and lift-to-drag ratio. From this study, an efficient configuration design and optimization process which utilizes the parameter-based configuration generation techniques and approximation method has been established, then 29% improvement of the directional stability by strong vortexes from chine nose is accomplished.

Papers : Effect of Sideslip on the Vortex Flow over a Delta Wing (논문 : 옆미끄럼각이 삼각 날개 와류에 미치는 영향)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of sideslip on the vortex over a delta wing was investigated experimentallu at a free strean velocity of 40 m/sec, corresponding to a Reynolds number of 1.76$\times$$10^6$, based on the root chord. The angles of attack ranged from $16{^{\circ}}$ to $28{^{\circ}}$, and the sideslip angles treated were $0{^{\circ}}$, $-10{^{\circ}}$, and $-20{^{\circ}}$. It was observed that the sideslip decreased the strengths of the vortices of both windward and leeward sides of the wing, and promoted the vortex breakdown on the windward side. At sideslip angle of $-10{^{\circ}}$, the vortex strength of leeward side was increased as the angle of attack increased. This asymmetric development and breakdown of vortices in sideslip condition would cause an abrubt change of the rolling moment at a high angle of of attack, which could be considered as a rolling moment instability.

Flow and Noise Characteristics of NACA0018 by Large-Eddy Simulation (LES를 이용한 NACA0018 에어포일 주위의 유동 및 이산소음계산)

  • KIM, H.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.433-438
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was numerically studied and compared with experimental datum. The numerical simulation was carried out by LES which employs a deductive dynamic model as subgrid-scale model. The result of an attack angle of $6^{\circ}$ indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of the pressure side and the turbulent boundary layer is formed over the suction side of the airfoil near the trailing edge. The periodic behavior of vortex formation was observed around the trailing edge and it persists further downstream in the wake. The frequency of the vortex formation in the wake was consistent with that of the discrete frequency noise.

  • PDF

An Experimental Study on the Pressure Distribution for the Surface of a Road Vehicle Model Subjected to Various Wind Direction (풍향의 변화에 따른 자동차 모형 표면의 압력분포에 대한 실험적 연구)

  • 지호성;김경천;박원규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.84-91
    • /
    • 2001
  • To investigate the aerodynamic characteristics of the on a road vehicle, experimenrs were performed at an Atmospheric Boundary Layer Wind Tunnel. The scaled model of an automobile with 1 : 3 scaling ratio was used. The Reynolds number based on the free stream velocity and model length was $7.93{\times}10^5$. The influence of crosswind to the stability of automobile was investigated by the pressure distribution measurements and flow visualization studies. with the variation of the angle of attack, the change in pressure coefficient depends highly on the flow separation regimes. The experimental and numerical results are compared and found to be in good agreements.

  • PDF

Evaluation of Tip Leakage Loss and Reduction of Efficiency of Axial Turbomachinery Using Numerical Calculation (수치계산에 의한 축류터보기계의 회전차 익말단의 누설손실과 효율저하에 대한 평가)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-80
    • /
    • 1999
  • Leakage vortices formed new blade tip causes an increase of total pressure loss near the casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of the tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated by varying the tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the loss distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and approximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.

A Study on the Shapes of Twin Curvy Sail for Unmanned Sail Drone (무인세일드론의 트윈커브세일 형상에 관한 연구)

  • Ryu, In-Ho;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1059-1066
    • /
    • 2021
  • In Korea, the importance of marine activities is great, and automatic weather observation facilities are operating on land to investigate abnormal weather phenomena caused by industrialization; however, the number of facilities at sea is insufficient. Marine survey ships are operated to establish marine safety information, but there are many places where marine survey ships are difficult to access and operating costs are high. Therefore, a small, unmanned vessel capable of marine surveys must be developed. The sail has a significant impact on the sailing performance, so much research has been conducted. In this study, the camber effect, which is a design variable of the twin curvy sail known to have higher aerodynamic performance than existing airfoil shapes, was investigated. Flow analysis results for five cases with different camber sizes show that the lift coefficient is highest when the camber size is 9%. Curvy twin sails had the highest lift coefficient at an angle of attack of 23° because of the interaction of the port and starboard sails. The port sail had the highest lift coef icient at an angle of attack of 20°, and the starboard sail had the lowest lift coef icient at an angle of attack of 15°. In addition, the curvy twin sail had a higher lift coefficient than NACA 0018 at all angles of attack.

Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect (받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yoon, Myung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.

An Experimental Study on Aircraft Internal Store Separation Characteristics (항공기 내부무장 분리특성 분석을 위한 풍동시험연구)

  • An, Eunhye;Cho, Donghyun;Kim, Jongbum;Jang, Youngil;Jeong, KyeongJin;Kim, Sangjin;Lee, Hokeun;Reu, Taekyu;Chung, Hyoungseog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.81-89
    • /
    • 2017
  • This study investigates store separation characteristics of an unmanned aerial vehicle having generic stealth configuration over unsteady flow of an internal bay. Free-drop wind tunnel tests are conducted to simulate bomb releases from an internal weapons bay while high-speed camera images are taken. The images are analyzed to examine the effects of flow velocity, angle of attack, flap deflection and the ejector force application on the store separation trajectories. For the free-drop wind tunnel tests, Froude Scaling is applied to match the dynamic similarity for the bomb model, and the ejector force is simulated by using small pneumatic cylinders. The results indicate that the test bomb model safely separates from the internal bay at the given test conditions and configurations. It is also observed that the effects of the flow velocity and ejector force application have greater impacts on the separation trajectories than those of angle of attack and flap deflection.

Heat/Mass Transfer Characteristics on Rib-roughened Surface for Impingement/Effusion Cooling System with Initial Crossflow (초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성)

  • Rhee, Dong-Ho;Nam, Yong-Woo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.338-348
    • /
    • 2004
  • The present study is conducted to investigate the effect of rib arrangements on an impingement/effusion cooling system with initial crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of tile hole diameter. Initial crossflow passes between the injection and effusion plates, and the square ribs (3mm) are installed on the effusion plate. Both the injection and effusion hole diameters are 10mmand Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effects of rib arrangements, various rib arrangements, such as 90$^{\circ}$transverse and 45$^{\circ}$angled rib arrangements, are used. Also, the effects of flow rate ratio of crossflow to impinging jets are investigated. With the initial crossflow, locally low transfer regions are formed because the wall jets are swept away, and level of heat transfer rate get decreased with increasing flow rate of crossflow. When the ribs are installed on the effusion plate, the local distributions of heat/mass transfer coefficients around the effusion holes are changed. The local heat/mass transfer around the stagnation regions and the effusion holes are affected by the rib positions, angle of attack and rib spacing. For low blowing ratio, the ribs have adverse effects on heat/mass transfer, but for higher blowing ratios, higher and more uniform heat transfer coefficient distributions are obtained than the case without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. Average heat transfer coefficients with rib turbulators are approximately 10% higher than that without ribs, and the higher values are obtained with small pitch of ribs. However, the attack angle of the rib has little influence on the average heat/mass transfer.