• 제목/요약/키워드: Flow Transition

검색결과 865건 처리시간 0.026초

탈질촉매 내 열화특성과 유동상태에 관한 연구 (A Study on Degradation Characteristic and Flow Behavior in De-NOx Catalyst)

  • 황승민
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1093-1101
    • /
    • 2010
  • In this study, the indirect correlation of degradation characteristic and flow behavior in the de-NOx catalyst is investigated experimentally. The inner flow behavior in the de-NOx catalyst is varied from turbulent flow to laminar flow and the degradation of the de-NOx catalyst is remarkably affected by the inner flow. The degradation of the catalyst is increased in the upstream region near the inlet because injected turbulent flow enhances the adhesion of ash particle on the catalyst surface. The degradation of the catalyst near the inlet also governs the overall efficiency of the catalyst. The amount of adhered ash particles on the catalyst surface decreases as they progress downstream. This is due to the inner flow transition from turbulent flow to laminar flow.

평행 Poiseuille, 평행 Couette, Blasius Flow의 준안정 해석 (Pseudospectral Analysis of Plane Poiseuille, Plane Couette and Blasius Flow)

  • 최상규;정명균
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.319-325
    • /
    • 2003
  • We investigate the spectra and the pseudospectra in plane Poiseuille flow, plane Couette flow and Blasius flow. At subcritical Reynolds number, the spectra are lied strictly inside the stable complex half-plane, but the pseudospectra are lied in the unstable half-plane, reflecting the large linear transient growth that certain perturbations may excite. It means that the smooth flows may become to turbulent even though all the eigenmodes decay monotonically. We found that pseudospectra is one reason that causes subcritical transition in plane Poiseuille flow and plane Couette flow and bypass transition in Blasius flow.

오목, 볼록면에서 평면충격파의 반사 (Reflection of Plane Shock Wave over Concave and Convex Walls)

  • 전흥균;권진영;권순범
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1473-1480
    • /
    • 1999
  • In the case of Impingement of plane moving shock wave over concave or convex double wedges (pseudo-stationary flow) and cylindrical walls (truly non-stationary flow), it Is expected that there are transitions from regular reflection to Mach reflection or vice versa In shock wave reflections. In these connections, it is necessary to verify the various of reflection process and transition angle for the reflection problems In double wedges, and to verify the transition angle, effects of curvature radius and initial wall angle on it for the reflection problems In cylindrical walls. Especially, we focused our attention to confirm the existence of hysteresis phenomenon induced by the different transition processes, and Neumann paradox, which is a small discrepancy between theoretical and experimental transition angles. Experiments were carried out by using the shock tube of $6{\times}6cm^2$, and high speed photographic technique consisted of delay unit, triggering system, light source of Xe lamp and so on was used for flow visualization.

Development of Wave Overtopping-Overflow Transition Model Based on Full-scale Experiments

  • Mase, Hajime;Kim, Sooyoul;Hasegawa, Makoto;Jeong, Jae-Hoon;Yoon, Jong-Sung
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.128-135
    • /
    • 2020
  • When high waves and storm surge strike simultaneously, the characteristics of the fluid field change drastically from overtopping according to the wave runup height to overflow through a transition state that combines overtopping and overflows. However, an estimation model or evaluation method has not yet been established because there is not enough engineering data. This study developed a wave overtopping-overflow transition model based on a full-scale experiment involving wave overtopping and overflow transition, which appropriately reproduced the effect of waves or the temporal change in inundation flow. Using this model to perform a calculation for the wave overtopping and overflow transition process under typical circumstances, this study determined the wave runup height and features of the inundation flow under time series changes as an example.

Theory and Prediction of Turbulent Transition

  • Dou, Hua-Shu;Khoo, Boo-Cheong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.114-132
    • /
    • 2011
  • We have proposed a new approach based on energy gradient concept for the study of flow instability and turbulent transition in parallel flows in our previous works. It was shown that the disturbance amplitude required for turbulent transition is inversely proportional to Re, which is in agreement with the experiments for imposed transverse disturbance. In present study, the energy gradient theory is extended to the generalized curved flows which have much application in turbomachinery and other fluid delivery devices. Within the frame of the new theory, basic theorems for flow instability in general cases are provided in details. Examples of applications of the theory are given from our previous studies which show comparison of the theory with available experimental data. It is shown that excellent agreement has been achieved for several configurations. Finally, various prediction methods for turbulent transition are reviewed and commented.

에폭시 경화물 DSC에 의한 유리전이 온도 측정의 분석조건 의존성 (The Effect of DSC Analysis Condition on the Glass Transition Temperature of curred Epoxy This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition.)

  • 오무원;권혁삼
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 춘계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 1994
  • This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition.

  • PDF

確率密度函數와 電導 Prode信號에 의한 垂直二相流의 流動樣式特性 (Flow pattern characteristics in vertical two phase flow by PDF and signals from conductance probe)

  • 손병진;김인석;이진
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.814-822
    • /
    • 1986
  • 본 연구에서는 이러한 점에 착안하여 비가열수직이상유동계에서 전도Probe 를 이용하여 시간평균보이드율을 측정하여 이들로부터 통계적으로 처리된 확률밀도함 수(PDF)분포와 이와 관련된 일련의 모우멘트계산을 시도 하므로써 유동양식과 천이특 성에 대하여 객관적이고 체계적인 해석을 하였다. 또한 학계 및 산업계에서는 측정 기구의 단순화가 요구되므로 전도Probe의 출력신호를 분석하여 유동양식에 따르는 특 성을 아울러 구명하였다.

γ-ReƟ 천이 모델을 사용한 KARI-11-180 익형의 천이 유동해석 (Numerical simulation study on transitional flow over the KARI-11-180 airfoil using γ-ReƟ transition model)

  • 사정환;김기로;조금원;박수형
    • 한국항공우주학회지
    • /
    • 제45권3호
    • /
    • pp.202-211
    • /
    • 2017
  • 본 연구에서는 KFLOW에서 사용하고 있는 ${\gamma}-Re_{\theta}$ 천이 모델을 사용하여 KARI-11-180 익형의 공력특성을 수치적으로 예측하고 그 결과를 실험 결과 및 XFOIL과 MSES의 결과와 비교하였다. 완전 난류모델은 천이모델에 비해 마찰항력을 크게 예측하기 때문에 전체적으로 높은 항력을 예측하는 등 천이모델과 완전 난류모델간의 차이를 확인하였다. KFLOW의 ${\gamma}-Re_{\theta}$ 모델을 사용한 결과는 실험을 통해 확인된 천이 유동 실험 결과의 특성을 잘 예측하고 있었으며 XFoil이나 MSES의 결과와도 잘 일치하고 있음을 확인하였다. 본 연구를 통해 drag-bucket현상이 익형 표면의 천이점의 급격한 변화로 인해 발생함을 확인하였다.

안내덕트 내부 난류유동구조에 따른 열전달 특성변화 수치해석 (Numerical Study on Heat Transfer Characteristics of Turbulent Flow in Transition Duct)

  • 유근종;최훈기;최기림
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.923-932
    • /
    • 2011
  • 본 연구에서는 복합화력발전소 가스터빈 출구가스 안내덕트 내부의 가스유동장이 배열회수보일러 전열기구에 미치는 영향을 CFD기법을 이용하여 분석하였다. 안내덕트 내부 난류흐름의 경우, 유속의 편차가 크고 선회 효과 및 상승류 현상이 심한 특징을 가지고 있음으로 이와 같은 유동의 수치해석을 위해 2개 방정식 난류점성 모델 중 RNG k-${\epsilon}$ 모델을 사용하였으며 유동장의 영향을 가장 많이 받는 배열 회수보일러 최종과열기관의 열전달특성변화를 파악하기 위하여 NTU 방식을 이용한 수치해석결과와, 산업계에서 적용하는 설계기법에 의한 결과를 비교하였다.

파형벽면이 있는 채널 유동의 응집 구조 연구 (COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL)

  • 장경식
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.