• Title/Summary/Keyword: Flow Stress Equation

Search Result 283, Processing Time 0.026 seconds

Expected Life Evaluation of Offshore Wind Turbine Support Structure under Variable Ocean Environment (해양환경의 변동성을 고려한 해상풍력터빈 지지구조물의 기대수명 평가)

  • Lee, Gee-Nam;Kim, Dong-Hyawn;Kim, Young-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.435-446
    • /
    • 2019
  • Because offshore structures are affected by various environmental loads, the risk of damage is high. As a result of ever-changing ocean environmental loads, damage to offshore structures is expected to differ from year to year. However, in previous studies, it was assumed that a relatively short period of load acts repeatedly during the design life of a structure. In this study, the residual life of an offshore wind turbine support structure was evaluated in consideration of the timing uncertainty of the ocean environmental load. Sampling points for the wind velocity, wave height, and wave period were generated using a central composites design, and a transfer function was constructed from the numerical analysis results. A simulation was performed using the joint probability model of ocean environmental loads. The stress time history was calculated by entering the load samples generated by the simulation into the transfer function. The damage to the structure was calculated using the rain-flow counting method, Goodman equation, Miner's rule, and S-N curve. The results confirmed that the wind speed generated at a specific time could not represent the wind speed that could occur during the design life of the structure.

Development of a Quantitative Model on Adolescent Cyberbullying Victims in Korea: A System Dynamics Approach (시스템다이내믹스를 활용한 국내청소년 사이버불링피해 모델 개발)

  • You, Mi Jin;Ham, Eun Mi
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.4
    • /
    • pp.398-410
    • /
    • 2019
  • Purpose: This study used a system dynamics methodology to identify correlation and nonlinear feedback structures among factors affecting adolescent cyberbullying victims (CV) in Korea and to construct and verify a simulation model. Methods: Factors affecting CV were identified by reviewing a theoretical background in existing literature and referencing various statistical data. Related variables were identified through content validity verification by an expert group, after which a causal loop diagram (CLD) was constructed based on the variables. A stock-flow diagram (SFD) using Vensim Professional 7.3 was used to establish a CV model. Results: Based on the literature review and expert verification, 22 variables associated with CV were identified and the CLD was prepared. Next, a model was developed by converting the CLD to an SFD. The simulation results showed that the variables such as negative emotions, stress levels, high levels of conflict in schools, parental monitoring, and time spent using new media had the strongest effects on CV. The model's validity was verified using equation check, sensitivity analysis for timestep and simulation with 4 CV adolescent. Conclusion: The system dynamics model constructed in this study can be used to develop intervention strategies in schools that are focused on counseling that can prevent cyberbullying and assist in the victims' recovery by formulating a feedback structure and capturing the dynamic changes observed in CV. To prevent cyberbullying, it is necessary to develop more effective strategies such as prevention education, counseling and treatment that considers factors pertaining to the individual, family, school, and media.

Effect of Moisture Content on Viscosity of Starch Dough (전분반죽의 점도에 미치는 수분함량의 영향)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.582-592
    • /
    • 1995
  • To measure rheological properties of the starch dough, an Extrusion Capillary Viscometer(ECV) cell was self-made and attached to Instron machine(Model 1140). Apparent viscosities of corn and waxy corn starch doughs were measured and their gelatinization degrees were determined by enzymatic analysis. When corn and waxy corn starch doughs with $36{\sim}52%$ moisture content were heated at $60{\sim}100^{\circ}C$, come-up time of the cold point of doughs decreased from 220 sec to 140 sec with increased in the moisture content. In the measurement range of $36{\sim}52%$ moisture content and $60{\sim}100^{\circ}C$ heating temperature, both corn and waxy corn starch doughs showed pseudoplastic flow behaviors. At the same shear rate, both shear stress and viscosity of starch dough decreased as the moisture content increased. At the moisture content above 44%, the shear stress and viscosity of starch dough decreased as the heating temperature increased from $60^{\circ}C\;to\;70^{\circ}C$, but increased as the heating temperature increased from $80^{\circ}C\;to\;100^{\circ}C$. When the moisture content increased and heating temperature, the gelatinization degree of starch dough increased from about 10% to about 62%. The gelatinization degree of waxy corn starch dough was $15{\sim}20%$ higher than that of corn starch dough under the same gelatinization conditions. The effects of moisture content on the viscosity of starch dough were examined by Arrhenius equation. As the moisture content increased, viscosity of starch dough decreased. But the effect of moisture content was greater in the range of $80{\sim}100^{\circ}C$ than in the range of $60{\sim}70^{\circ}C$ heating temperature.

  • PDF

Rheological Properties of Sweet Potato Starch-sucrose Composite (고구마전분-sucrose 복합물의 레올로지 특성)

  • Cho, Sun-A;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.184-189
    • /
    • 2008
  • Effects of sucrose at different concentrations (0, 10, 20, and 30%, w/w) on steady and dynamic shear rheological properties of sweet potato starch (SPS) paste (5%, w/w) were investigated. The steady shear rheological properties of SPS-sucrose composites were determined from rheological parameters based on power law and Casson flow models. At 25$^{\circ}C$ all the samples showed pseudoplastic and thixoropic behavior with high yield stress. Consistence index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$) values of SPS-sucrose composites decreased with increasing sucrose concentration from 10% to 30%. The decrease of swelling power was observed at higher sucrose concentration (>20%) and the low swelling power yielded a lower K, ${\eta}_{a,100}$, and ${\sigma}_{oc}$ values. In temperature range of 25-70$^{\circ}C$, Arrhenius equation adequately assessed variation with temperature. Oscillatory test data showed weak gel-like behavior. Magnitudes of storage (G') and loss (G") moduli increased with an increase in sucrose concentration and frequency. The SPS-sucrose composite at 30% concentration closely followed the Cox-Merz superposition rule.

Study on the Scale Effect of Viscous Flows around the Ship Stern (선미 점성 유동장에 미치는 척고효과에 관한 연구)

  • Kwak, Y.K.;Min, K.S.;Oh, K.J.;Kang, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Viscous flow around actual ship is calculated by an use of RANS equations. The propriety of this computing method, usefulness to hull form design and the scale effect which is the effect of viscous flow depending on the scale of ship model are investigated. Reynolds stress is modelled by using k-${\varepsilon}$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the arbitrary 3-dimensional shape of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM. In the calculation of pressure, SIMPLE method is adopted and the solution of the discretized equation is obtained by the line-by-line method with the use of TDMA The calculations of two ships, 4410 TEU container carrier and 50,000 DWT class bulk carrier, are performed at model and actual ship scale. The results are compared and discussed with the model test results which are viscous resistance, nominal wake distribution at propeller plane and limiting streamline on the hull surface. They describe the effect of stem form and the scale effect very well. In particular, the calculated nominal wake distribution and limiting streamline are agreed qualitatively with the experiments and the viscous resistance values are estimated within ${\pm}5%$ difference from the resistance tests.

  • PDF

Numerical Analysis of Supercavitating Flows of Two-Dimensional Simple Bodies (2차원 단순 물체의 초공동 유동에 대한 수치해석)

  • Lee, Hyun-Bae;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.436-449
    • /
    • 2013
  • In this paper, a numerical analysis is carried out to study the characteristics of supercavitating flows and the drag of relatively simple two-dimensional and axisymmetric bodies which can be used for supercavity generation device, cavitator, of a high-speed underwater vehicle. In order to investigate the suitability of numerical models, cavity flows around the hemispherical head form and two-dimensional wedge are calculated with combinations of three turbulence models(standard $k-{\epsilon}$, realizable $k-{\epsilon}$, Reynolds stress) and two cavitation models(Schnerr-Sauer, Zwart-Gerber-Belamri). From the results, it is confirmed that the calculated cavity flow is more affected by the turbulence model than the cavitation model. For the calculation of steady state cavity flows, the convergence in case of the realizable $k-{\epsilon}$ model is better than the other turbulence models. The numerical result of the Schnerr-Sauer cavitation model is changed less by turbulence model and more robust than the Zwart-Gerber-Belamri model. Thus the realizable $k-{\epsilon}$ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate supercavitating flows around disks, two dimensional $10^{\circ}$ and $30^{\circ}$ wedges. In case of the disk, the cavitation number dependences of the cavity size and the drag coefficient predicted are similar to either experimental data or Reichardt's semi-empirical equations, but the drag coefficient is overestimated about 3% higher than the Reichardt's equation. In case of the wedges, the cavitation number dependences of the cavity size are similar to experimental data and Newman's linear theory, and the agreement of the cavity length predicted and Newman's linear theory becomes better as decreasing cavitation number. However, the drag coefficients of wedges agree more with experimental data than those of Newman's analytic solution. The cavitation number dependences of the drag coefficients of both the disk and the wedge appear linear and simple formula for estimating the drag of supercavitating disks and wedges are suggested. Consequently, the CFD scheme of this study can be applied for numerical analysis of supercavitating flows of the cavitator and the cavitator design.

Rheological Properties of Rehydrated Suspensions of Freeze Dried Kochujang Powders (동결건조 분말고추장의 재수화시 리올로지 특성)

  • Kim, Suk-Shin;Chang, Kyu-Seob;Yoon, Han-Kyo;Lee, Sang-Kyu;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 1987
  • Rheological properties of rehydrated suspensions of two kinds of freeze dried Kochujang powders, processed at different freezing rates, were compared with raw Kochujang using Brookfield wide-gap rotational viscometer at $25^{\circ}C-60^{\circ}C$. Shear rates ranged from $0.1965\;sec^{-1}$ to $1.9650\;sec^{-1}$ and solid content ranged from 47% to 56%. Rehydrated suspensions of quickly frozen Kochujang powder and slowly frozen Kochujang powder, and raw Kochujang exhibited pseudoplastic behaviors with yield stress and presented thixotropic properties which followed the second-order kinetic behavior proposed by Tiu. Suspensions of Kochujang powders exhibited considerably higher decaying rates than raw Kochujang. The dependency of the equilibrium structure parameter on the shear rate was weak, and there were no significant differences among the values of structure parameters of three samples. The temperature dependency of the apparent viscosity of Kochujang suspension was fully expressed by Arrhenius equation and activation energies of suspensions of quickly frozen Kochujang powder and slowly frozen Kochujang powder, and raw Kochujang were 2.21, 2.18, and 2.32 Kcal/g.mole respectively. Consistency indices of three samples increased with solid content and decreased with temperature. Flow behavior indices of three samples showed no considerable dependency on the temperature and solid content. There were no significant differences in the rheological properties between two Kochujang powders.

  • PDF

Development of Numerical Method for Large Deformation of Soil Using Particle Method (입자법을 이용한 토사의 대변형 해석법 개발)

  • Park, Sung-Sik;Lee, Do-Hyun;Kwon, Min-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.35-44
    • /
    • 2013
  • In this study, a particle method without using grid was applied for analysing large deformation problems in soil flows instead of using ordinary finite element or finite difference methods. In the particle method, a continuum equation was discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. Soil behavior changes from solid to liquid state with increasing water content or external load. The Mohr-Coulomb failure criterion was incorporated into the particle method to analyze such three-dimensional soil behavior. The yielding and hardening behavior of soil before failure was analyzed by treating soil as a viscous liquid. First of all, a sand column test without confining pressure and strength was carried out and then a self-standing clay column test with cohesion was carried out. Large deformation from such column tests due to soil yielding or failure was used for verifying the developed particle method. The developed particle method was able to simulate the three-dimensional plastic deformation of soils due to yielding before failure and calculate the variation of normal and shear stresses both in sand and clay columns.

Suspension of Sediment over Swash Zone (Swash대역에서의 해빈표사 부유거동에 관한 연구)

  • Cho, Yong Jun;Kim, Kwon Soo;Ryu, Ha Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.95-109
    • /
    • 2008
  • We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Change of early atherosclerotic markers in obese children (비만아에서 조기 동맥경화증 지표들의 변화)

  • Roh, Eui Jung;Yoon, Jung Min;Lim, Jae Woo;Cheon, Eun Jung;Ko, Kyoung Og
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.368-374
    • /
    • 2006
  • Purpose : The prevalence of obesity in children is increasing rapidly. Epidemiologic studies suggest that obesity induced atherosclerosis may start in childhood. We investigated whether obese children show early abnormalities of the arterial wall and endothelial dysfunction. Methods : Thirty-eight obese children(14-16 years old of age, male, body mass index $29.40{\pm}3.18kg/m^2$) and forty-five age and sex-matched healthy control children(body mass index $18.43{\pm}1.01kg/m^2$) were enrolled. Their carotid artery intima-media thickness(IMT) and brachial artery flowmediated dilation(FMD) response were measured by high-quality ultrasound system, and compliance, distensibility, stiffness index, incremental elastic modulus and wall stress were calculated by equation. In addition, we looked at the relations between these arterial features and metabolic cardiovascular risk factors. Results : The obese children had significantly increased IMT($0.52{\pm}0.09mm$ vs $0.40{\pm}0.07mm$, P< 0.001) and markedly impaired FMD($7.35{\pm}7.78$ percent vs $20.34{\pm}16.81$ percent, P<0.001) than the healthy controls. But the compliance and distensibility were lower, and the stiffness index, incremental elastic modules and wall stress were higher in the obese group than the control group, but not statistically significantly. Body mass index was highly associated with increased IMT(r=0.612, P<0.001) and reduced FMD(r=-0.414, P<0.001). Conclusion : We showed the deleterious effect of child obesity on both early functional and structural atherosclerotic markers. The ultrasonic findings will be used for screening and follow up markers to identify high-risk patients among obese children.