• 제목/요약/키워드: Flow Strain

검색결과 867건 처리시간 0.023초

AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향 (The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy)

  • 고병철;박도현;유연철
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

금속소재의 고변형률 영역 유동응력선도 평가 (Evaluation of Flow Stress of Metal up to High Strain)

  • 이상곤;이인규;이성윤;이성민;정명식
    • 소성∙가공
    • /
    • 제29권6호
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.

튜브 액압성형품의 가공 경화 특성 연구 (Strain Hardening Behavior in the Tube Hydroforming)

  • 박현규;임홍섭;이해경;김광순;문영훈
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.564-569
    • /
    • 2008
  • Strain hardening behavior during hydroforming has been experimentally investigated. The variation of flow stress was used as an index of strain hardening during respective processes and the flow stress was estimated from the correlationship between flow stress and effective strain. The local hardness after hydroformig was also predicted by effective strain. By using the inter-relationships between hardness-flow stress-effective strain at variable pre-strains, the strain hardening behavior during hydroforming has been successfully analyzed. The comparison of predicted hardness with measured hardness confirmed that the methodology used in this study was feasible and the strain hardening behavior can be quantitatively estimated.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 - (Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

마그네슘 합금 판재의 변형률, 변형률 속도 및 온도 환경을 고려한 유동응력 모델에 대한 연구 (Evaluation of Strain, Strain Rate and Temperature Dependent Flow Stress Model for Magnesium Alloy Sheets)

  • 송우진;허성찬;구태완;강범수;김정
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.229-235
    • /
    • 2011
  • The formability of magnesium alloy sheets at room temperature is generally low because of the inherently limited number of slip systems, but higher at temperatures over $150^{\circ}C$. Therefore, prior to the practical application of these materials, the forming limits should be evaluated as a function of the temperature and strain rate. This can be achieved experimentally by performing a series of tests or analytically by deriving the corresponding modeling approaches. However, before the formability analysis can be conducted, a model of flow stress, which includes the effects of strain, strain rate and temperature, should be carefully identified. In this paper, such procedure is carried out for Mg alloy AZ31 and the concept of flow stress surface is proposed. Experimental flow stresses at four temperature levels ($150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$) each with the pre-assigned strain rate levels of $0.01s^{-1}$, $0.1s^{-1}$ and $1.0s^{-1}$ are collected in order to establish the relationships between these variables. The temperature-compensated strain rate parameter which combines, in a single variable, the effects of temperature and strain rate, is introduced to capture these relationships in a compact manner. This study shows that the proposed concept of flow stress surface is practically relevant for the evaluation of temperature and strain dependent formability.

채널 간격에 따른 대향류 확산화염의 가연 영역의 변화 (Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap)

  • 이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF

동적 재결정에 의한 연화를 고려한 열간성험공정 해석 (Analysis of Hot Forming Process with Flow Softening by Dynamic Recrystallization)

  • 방원규;이종수;장영원
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.137-143
    • /
    • 2001
  • The change of flow stress due to dynamic recrystallization during hot forming process is investigated. A series of mechanical tests has been conducted at various temperatures, and constitutive relations and recrystallization kinetics were formulated from the test results. The effect of dynamic recrystallization to the flow stress was implemented to a commercial FEM code by conditioned remapping of state variables. The datum strain of stress compensation was optimized to minimize the overestimation of forming loads. Suggested datum was formulated as an exclusive function of critical strain for recrystallizalion and validated by mechanical tests and microstructural observations.

  • PDF

304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측 (Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel)

  • 한형기;유연철;김성일
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

링압축실험에 의한 유동응력 및 마찰인자의 결정 (II) (Determination of Flow Stress and Friction Factor by the Ring Compression Test (II))

  • 최영민;김낙수
    • 소성∙가공
    • /
    • 제3권2호
    • /
    • pp.215-228
    • /
    • 1994
  • The purpose of this paper is to pursue a general method to determine both the flow stress of a material and the friction factor by ring compression test. The materials are assumed to obey the expanded n-power hardening rule including the strain-rate effect. Ring compression is simulated by the rigid-plastic finite element method to obtain the database used in determining the flow stress and friction factor. The Simulation is conducted for various strain hardening exponent, strain-rate sensitivity, friction factor, and compressing speed, as variables. It is assumed that the friction factor is constant during the compression process. To evaluate the compatibility of the database, experiments are carried out at room and evaluated temperature using specimens of aluminum 6061-T6 under dry and grease lubrication condition. It is shown that the proposed test method is useful and easy to use in determining the flow stress and the friction factor.

  • PDF

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.