• Title/Summary/Keyword: Flow Softening

Search Result 89, Processing Time 0.025 seconds

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Development of Sealing Technology for Far-Infrared Multispectral ZnS Using Chalcogenide Glass Material

  • Soyoung Kim;Jung-Hwan In;Karam Han;Yoon Hee Nam;Seon Hoon Kim;Ju Hyeon Choi
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.515-521
    • /
    • 2022
  • Various types of optical materials and devices used in special environments must satisfy durability and optical properties. In order to improve the durability of zinc sulfide multispectral (MS ZnS) substrates with transmission wavelengths from visible to infrared, Ge-Sb-Se-based chalcogenide glass was used as a sealing material to bond the MS ZnS substrates. Wetting tests of the Ge-Sb-Se-based chalcogenide glass were conducted to analyze flowability as a function of temperature, by considering the glass transition temperature (Tg) and softening temperature (Ts). In the wetting test, the viscous flow of the chalcogenide glass sample was analyzed according to the temperature. After placing the chalcogenide glass disk between MS ZnS substrates (20 × 30 mm), the sealing test was performed at a temperature of 485 ℃ for 60 min. Notably, it was found that the Ge-Sb-Se-based chalcogenide glass sealed the MS ZnS substrates well. After the MS ZnS substrates were sealed with chalcogenide glass, they showed a transmission of 55 % over 3~12 ㎛. The tensile strength of the sealed MS ZnS substrates with Ge-Sb-Se-based chalcogenide glass was analyzed by applying a maximum load of about 240 N, confirming its suitability as a sealing material in the far infrared range.

A Study on Process Performances of Continuous Electrodeionization with a Bipolar Membrane for Water Softening and Electric Regeneration (바이폴라막을 이용한 연수용 전기탈이온의 공정 효율 및 전기적 재생에 관한 연구)

  • Moon, Seung-Hyeon;Hong, Min-Kyoung;Han, Sang-Don;Lee, Hong-Joo
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.210-218
    • /
    • 2007
  • CEDI-BPM(Continuous Electrodeionization-Bipolar Membrane) has advantages due to high ion permselectivity through ion exchange membranes and the production of $H^+$ and $OH^-$ ions on the bipolar membrane surfaces for regeneration of ion exchange resin during electrodeionization operation. In this study, hardness materials were removed by the CEDI-BPM without scale formation and the ion exchange resins were electrically regenerated during the operation. The adsorption characteristic of ion exchange resin surface, the influence of flow rate on the hardness removal and electric regeneration were investigated in the study. The removal efficiency of Ca was higher than that of Mg in the CEDI-BPM, which was related to the high adsorption capacity of Ca on the cation exchange resin. With increasing flow rate, the flux of Ca and Mg was enhanced by the permselectivity of a cation exchange membrane. In the electric regeneration of CEDI-BPM, it was shown that the regeneration efficiency was higher with a lower regeneration potential applied between cathode and anode.

Effect of Precipitates on the High Temperature Tensile Properties of Cast Alloy 718 (주조용 718합금의 고온 인장 성질에 미치는 석출물의 영향)

  • Ju, Dong-Won;Jo, Chang-Yong;Kim, Du-Hyeon;Ryu, Yeong-Su;Kim, In-Su;Jo, Hae-Yong;Choe, Seung-Ju
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.515-521
    • /
    • 2000
  • The effect of precipitates on the high temperature tensile properties of cast alloy 718 was investigated by phase extraction method and microstructural observation. The value of tensile strength and elongation gradually decreased with increasing testing temperature up to $760^{\circ}C$. Elongation of the alloy increased, while tensile strength decreased above 76$0^{\circ}C$. The amount of precipitates in the specimen that tensile tested at $760^{\circ}C$ showed maximum owing to stress assisted precipitation. Therefore, the alloy exhibited the lowest value of the elongation and the degree of decrease in yield strength at this temperature due to high flow stress of precipitates. Little amount of precipitate, especially $\gamma$' and $\gamma$", resulted in softening of the alloy at the temperature above $760^{\circ}C$.

  • PDF

Resuspension Characteristics of Deposited Fine-Grained Sediments (미세퇴적물(微細堆積物)의 부상특성(浮上特性)에 관한 연구(硏究))

  • Kim, Cha-Kyum;Lee, Jong-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.221-229
    • /
    • 1992
  • A series of experiments on the resuspension of deposited fine-grained sediments were carried out in a recirculating straight flume to investigate the influence of the sediment type, water content and bed shear stress (${\tau}_b$) on the resuspension characteristics of the sediments. The sediments were sampled from Youngkwang coast and Youngdo coast which are located in the western sea and southeastern sea of Korea, respectively. Critical bed shear stress (${\tau}_c$) for resuspension was deduced for each experimental series. For the same sediment, critical bed shear stress for resuspension decreased but suspension mass or rate increased with increasing water content. The resuspension of deposited fine-grained sediments depended strongly on the water content, and the sediment type characterizing the inter-particle bond strength. It has been found that critical bed shear stress for resuspension in the unidirection flow is about 4 times higher than that in the combined wave-current flow, In case of lower bed shear stress, after an initially high suspension, suspension mass approaches a constant value due to the bed hardening with increasing time, but in case of higher bed shear stress, suspension mass increased successively due to the bed softening with time. Initial suspension rate, $E={\alpha}_3({\tau}_b/{\tau}_c-1)^{\beta}$ (where ${\alpha}_3$ and ${\beta}$=empirical constants), was estimated for each experimental series, ${\alpha}_3$ and ${\beta}$ values for the same sediment increased with water content.

  • PDF

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.