• 제목/요약/키워드: Flow Regime Analysis

검색결과 198건 처리시간 0.025초

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF

In-line형 심해 유수분리기의 분리 효율에 관한 연구 (A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator)

  • 김현지;김귀남;김영주;우남섭;허선철
    • 한국산업융합학회 논문집
    • /
    • 제24권3호
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

RELAP5 /MOD3 재관수 모델의 개선 및 평가 (Improvements to the RELAP5/MOD3 Reflood Model and Assessment)

  • 정법동;이영진;박찬억;최철진;황태석
    • Nuclear Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.265-276
    • /
    • 1994
  • FLECHT-SEASET 실험에 대한 REIAP5/MOD3 평가시에 밝혀진 코드결함을 수정하기 위하여 RELAP5/MOD3 재관수 모델을 개선하였다. 모델개선은 재관수 열전달 모델의 수정과 분산유동영역의 액적 크기의 조절을 통하여 이루어졌으며 재관수 계산시 발생되는 압력 spike와 수위진동 등의 결함을 개선하기 위하여 벽면비등모델의 time-smoothing과 천이 유동시의 level tracking모델도 첨가되었다. FLECHT-SEASET 실험에 대한 개선모델의 검증과 발전소의 대형냉각재 상실 사고해석 응용에서 코드결함이 개선되었음을 알 수 있었다.

  • PDF

PIV 계측에 의한 실린더 근접후류에서 2차 와류의 특성 연구 (A Study on Characteristics of Secondary Vortices in the Near Wake of a Circular Cylinder by PIV Measurement)

  • 성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.404-409
    • /
    • 2000
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder where the Taylor hypothesis does not hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV. For the analysis in a moving frame of reference, the convection velocity of the Karman vortices is evaluated from the trajectory of vortex center which is defined as the centroid of the vorticity field. Then, a saddle point is obtained by applying the critical point theory. Science the distributions of fluctuating Reynolds stresses defined by triple-decomposition are closely related with the existence of secondary vortices. the physical meaning of them is explained in conjunction with vortex center and saddle point trajectories. Finally, the temporal evolution of streamwise vortex is also discussed.

  • PDF

Cinematic PIV에 의한 실린더 후류의 위상평균된 3차원 구조 (Phase-Locked Three-Dimensional Structures in the Cylinder Wake Observed from Cinematic PIV Data)

  • 성재용;박강국;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.661-666
    • /
    • 2000
  • Near-wake flow field of a circular cylinder is studied by means of a cinematic PIV system with high sampling rate and large internal memory block. Experiments are conducted in a closed-cycle water tunnel system and a cross-correlation algorithm in conjunction with FFT (Fast Fourier Transform) analysis and an offset correlation technique is used for vector processing. With the help of very high sampling frequency compared to the shedding frequency, it is possible to obtain phase-averaged information of the three-dimensional wake, even though the shedding is not forced but natural. Phase-locked vortical structures observed simultaneously from the spanwise and cross-stream planes are displayed in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength or around one diameter. Spatial relations and temporal evolutions of the primary Karman vortex and the secondary vortex are also discussed schematically.

  • PDF

Navier-Stokes 방정식을 이용한 천음속 익형의 설계최적화 연구 (Design Optimization of Transonic Airfoils Based on the Navier-Stokes Equation)

  • 이형민;조창열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.177-185
    • /
    • 1999
  • The airfoil design optimization procedures based on the Navier-Stokes equations were developed, This procedure enables more realistic and practical transonic airfoil designs. The modified Hicks-Henne functions were used to generate the shape of airfoils. Five Hick-Henne functions were used to design upper surface of airfoil only. To enhance the ability of Hick-Henne function to generate various airfoil shape with limited number of functions, the positions of control points were adjusted through optimization procedure. The design procedure was applied to the single-point design for the drag minimization problem with lift and area constraints. The result shows the capability of the procedure to generate much realistic airfoils with very small drag-creep in the low transonic regime. This is mainly due to the viscosity effect of Navier-Stokes flow analysis. However, in the higher transonic range tile drag-creep appears. The multi-point design is shown to be an effective way to avoid the drag-creep and improve off-design performance which is very similar in the Euler design.

  • PDF

수문변화지표법을 이용한 기후변화가 만경강 유역의 유황에 미치는 영향분석 (Analysis of Climate Change Impact on Flow Regime Using the Indicators of Hydrologic Alteration(IHA) in the Mangyoung River Basin)

  • 홍일;정세진;김병식;김지성;김규호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.562-562
    • /
    • 2015
  • 하천의 유황특성을 분석하는 것은 하천생태계의 변화를 파악하고 예측하는데 있어 매우 중요하다고 할 수 있다. 최근에는 수문학적인 변화과정을 통계학적 기법을 적용하여 정량적인 지표로 산정하고 분석하는 모델을 개발하여 다양한 연구가 진행되고 있다. 특히 미국 Nature Conservancy에서 개발한 수문변화지표법(IHA)은 일(daily)유출량 자료로부터 수문학적 관점에서의 특성지표와 환경유량 관점에의 변화지표를 분석함으로써 하천 유황변동을 정량화 할 수 있다. 본 연구는 기후변화가 향후 하천유황과 수생태계에 미치는 영향을 분석하기 위해 중규모 하천유역인 만경강을 대상으로 하고 RCP 8.5 기후변화시나리오를 기반으로 준분포형 모형인 SLURP 모형으로부터 일(daily)단위의 유출모의 시나리오를 작성하였다. 그리고 수문변화지표법(IHA)을 이용하여 기후변화에 따른 하천 유황과 수생태계에 미치는 영향을 정량화하였다.

  • PDF

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

여러 가지 형태의 립이 설치된 수평채널의 열전달 및 압력강하 특성에 관한 수치해석 (Numerical analysis on heat transfer and pressure drop characteristics in a horizontal channel with various ribs)

  • 김지훈;허주녕;안성후;이두호;손영석;신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.40-46
    • /
    • 2013
  • 열전달 향상을 위하여 이차유동을 발생시켜 열전달을 증가시키는 방법에는 여러 가지가 있다. 본 연구에서는 수평채널에 다양한 형태의 립을 설치하여 유속을 변화시켰을 때의 열전달 및 압력강하 특성을 수치해석을 통하여 고찰하였다. 립은 수평채널의 아랫면에 설치하였고, 립의 높이는 5mm이다. 립이 $60^{\circ}$ 기울어지고 그루브도 설치된 경우 열전달 특성이 가장 우수하게 나타났는데, 이는 주유동이 립을 따라 흘러가면서도 유속이 어느 정도 유지되기 때문이다. 끊어진 립에서 주유동이 립의 저항을 적게 받으면서 압력강하가 가장 작게 나타났다. 모든 립의 형태에서 유속이 증가함에 따라 열전달이 향상되는 경향을 보였지만 성능계수는 감소하였다.

주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구 (Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder)

  • 이정엽;이상준
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.