• Title/Summary/Keyword: Flow Redirection

Search Result 7, Processing Time 0.021 seconds

AP-Initiated Flow Redirection Mechanism for AP Load Balancing in WLAN Environments (무선랜 환경에서 AP 로드 밸런싱을 위한 AP-개시 플로우 리다이렉션 메커니즘)

  • Kim, Mi-Hui;Chae, Ki-Joon
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2009
  • IEEE802.11 Wireless LAN(WLAN) is being widely used in public space such as airport, and increases the networking boundary in campus and enterprise, and it has lastly attracted considerable attention for mesh network and converged network with other 3G mobile communication networks. In WLAN, load balancing among Access Points(AP) is an important issue for efficient resource management or supporting the Quality of Service(QoS) of traffic, but most researches focused on the AP selection in network entry or roaming of Stations(STA). In this paper, we propose an AP-Initiated Flow Redirection(FR) for AP load balancing by monitoring AP's availability in the true sense. When the AP's resource becomes almost saturated, that is used more than a specific threshold, the AP queries the roaming possible neighbor APs about their availability and calculates the distribution of traffic load with statistical methods such as entropy or chi-square. Finally, the AP decides flows and new APs for redirection and performs it. Our simulation results show that our FR mechanism increases the performance in the various views.

  • PDF

Numerical Study on Tribrachial Flame Propagation in a 2-D Mixing Layer (연료/산화제의 2차원 혼합층에서 삼지화염의 전파 특성에 관한 수치해석)

  • Kim, Jun-Hong;Kim, Hong-Jip;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Propagation characteristics of tribrachial flames have been studied numerically in a two-dimensional fuel/oxidizer mixing layer. A flame is initiated by imposing a high temperature ignition source. Subsequent propagation of a tribrachial flame is traced. The flow redirection effect at the leading edge of a tribrachial flame increases the propagation speed beyond the corresponding stoichiometric laminar burning velocity. The effect of mixture fraction gradient on the propagation speed of a tribrachial flame is analyzed in a mixing layer considering that mixture fraction gradient increases as a tribrachial flame propagates toward upstream. As the flame curvature at the leading edge increases with decreasing mixture fraction gradient, the flow redirection effect becomes more pronounced on the flame propagation speed. As a result, the propagation speed of a tribrachial flame increases with decreasing mixture fraction gradient.

  • PDF

A Study of Correlation between Flame Propagation Velocity and Scalar Dissipation Rate for a Liftoff Flame (부상화염에서 화염전파속도와 스칼라소산율의 상호 관계에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of liftoff flame. To verify reliance of numerical calculation, the liftoff heights of liftoff flame for various fuel exit velocities are compared between the existing experimental research results and the present calculation results. The flame propagation velocity is conducted at the flow redirection point which is on a stoichiometric line ahead of flame front. This point was selected constant distance from triple point regardless of fuel exit velocity at the previous research. This causes considerable errors for the flame propagation velocity and scalar dissipation rate. The main issue of the present research is to establish the resonable method to select the redirection point and so that to clarify the relationship between flame propagation velocity and scalar dissipation rate, which is the core properties in a triple flame stability.

  • PDF

A Transitional Behavior of a Premixed Flame and a Triple Flame in a Lifted Flame(II) (부상화염에서 예혼합화염과 삼지화염의 천이적 거동(II))

  • Jang Jun Young;Kim Tae Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.376-383
    • /
    • 2005
  • In the paper we investigate characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. In previous study, we showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. A gas-chromatograph is used to measure concentration field, a smoke-wire system is used to measure streak line, and a PIV system is used to measure velocity field in lifted flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. In PIV measurement, flow velocity for those three flames has minimum value at the tip of flame front. To differentiate triple flame and premixed flame, $\Phi$ value of partially premixed fraction is employed. The partially premixed fraction $\Phi$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions (벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석)

  • Kim, Nam-Il;Maruta, Kaoru
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

Behaviors of Premixed Flames and Triple Flames with its Concentration Difference in a Slot Burner (슬롯버너에서 농도차이에 따른 예혼합화염과 삼지화염의 거동)

  • Kim, Tae-Kwon;Jang, Jun-Young;Park, Jeong;Jun, Seong-Hwa;Miwa, Kei
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.85-90
    • /
    • 2004
  • We have presented characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. The experimental apparatus consisted of a slot burner and a contraction nozzle for a lifted flame. As concentration difference of the both side of slot burner increases, the shape of flame changed from a premixed flame to a triple flame, and the liftoff height is decreased to the minimum value and then increase again. Around this minimum point, it is confirmed a transition regime from premixed flame to triple flame. Consequently, the experimental results of the liftoff height, flame curvature and luminescence intensity showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. To differentiate triple flame and premixed flame, ${\Phi}$ value of partially premixed fraction is employed. The partially premixed fraction ${\Phi}$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

  • PDF

Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, Cadicellulosirupter bescii

  • Minseok Cha;Jun-Ha Kim;Hyo-Jin Choi;Soo Bin Nho;Soo-Yeon Kim;Young-Lok Cha;Hyoungwoon Song;Won-Heong Lee;Sun-Ki Kim;Soo-Jung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1384-1389
    • /
    • 2023
  • This work aimed to evaluate the feasibility of biohydrogen production from Barley Straw and Miscanthus. The primary obstacle in plant biomass decomposition is the recalcitrance of the biomass itself. Plant cell walls consist of cellulose, hemicellulose, and lignin, which make the plant robust to decomposition. However, the hyperthermophilic bacterium, Caldicellulosiruptor bescii, can efficiently utilize lignocellulosic feedstocks (Barley Straw and Miscanthus) for energy production, and C. bescii can now be metabolically engineered or isolated to produce more hydrogen and other biochemicals. In the present study, two strains, C. bescii JWCB001 (wild-type) and JWCB018 (ΔpyrFA Δldh ΔcbeI), were tested for their ability to increase hydrogen production from Barley Straw and Miscanthus. The JWCB018 resulted in a redirection of carbon and electron (carried by NADH) flow from lactate production to acetate and hydrogen production. JWCB018 produced ~54% and 63% more acetate and hydrogen from Barley Straw, respectively than its wild-type counterpart, JWCB001. Also, 25% more hydrogen from Miscanthus was obtained by the JWCB018 strain with 33% more acetate relative to JWCB001. It was supported that the engineered C. bescii, such as the JWCB018, can be a parental strain to get more hydrogen and other biochemicals from various biomass.