• Title/Summary/Keyword: Flow Rate Ratio

Search Result 1,850, Processing Time 0.034 seconds

Buffer Intensity of Ammonia and MPA in Water-Steam Cycle of PWRs (가압경수로 원전 물-증기 순환영역에서 암모니아와 MPA의 완충세기)

  • Rhee, In-H.;Ahn, Hyun-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2708-2712
    • /
    • 2010
  • Amines, ammonia or 3-methoxypropylamine (MPA), are used to maintain the optimized pH for the prevention of corrosion in the secondary side of Pressurized Water Reactors (PWRs). They are differently dissociated as a function of temperature which is not same in each location of the water-steam cycle. pH at the operation temperature depends on temperature of fluid and equilibrium constants of water and amines. Thus, every amine provides the different pH in the entire secondary side so that pH is not only the sufficient parameter in corrosion control. The secondary parameter, i.e., buffer intensity, is the ability to maintain a stable pH when $H^+$ are added or removed due to the ingress of impurities or the reaction of corrosion. The buffer intensity is necessary to provide the selection criteria for the best pH control agent for secondary side and the basic understanding of the reason why the flow-accelerated corrosion(FAC) rate may demonstrate the bell-shape curve over temperature. The buffer intensities of ammonia and MPA were reviewed over the entire operation temperature of PWRs. The sufficient buffer intensity is provided for the inhibition of corrosion by ammonia in low temperature $(25{\sim}100^{\circ}C)$ and by DMA in high temperature $(150{\sim}250^{\circ}C)$. In terms of buffer intensity, i) the best pH control agent is an amine with $pK_a(T)$ range of pH(T)- $1{\leq}pK_a(T){\leq}pH(T)$ + 0.5 and ii) the amine solution should have sufficient buffer intensity, ${\beta}$ to inhibit corrosion, and iii) FAC rate may be maximum at the temperature, where ${\beta}_B/{\beta}$ ratio is lowest.

Fabrication of Large Area Transmission Electro-Absorption Modulator with High Uniformity Backside Etching

  • Lee, Soo Kyung;Na, Byung Hoon;Choi, Hee Ju;Ju, Gun Wu;Jeon, Jin Myeong;Cho, Yong Chul;Park, Yong Hwa;Park, Chang Young;Lee, Yong Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.220-220
    • /
    • 2013
  • Surface-normal transmission electro-absorption modulator (EAM) are attractive for high-definition (HD) three-dimensional (3D) imaging application due to its features such as small system volume and simple epitaxial structure [1,2]. However, EAM in order to be used for HD 3D imaging system requires uniform modulation performance over large area. To achieve highly uniform modulation performance of EAM at the operating wavelength of 850 nm, it is extremely important to remove the GaAs substrate over large area since GaAs material has high absorption coefficient below 870 nm which corresponds to band-edge energy of GaAs (1.424 eV). In this study, we propose and experimentally demonstrate a transmission EAM in which highly selective backside etching methods which include lapping, dry etching and wet etching is carried out to remove the GaAs substrate for achieving highly uniform modulation performance. First, lapping process on GaAs substrate was carried out for different lapping speeds (5 rpm, 7 rpm, 10 rpm) and the thickness was measured over different areas of surface. For a lapping speed of 5 rpm, a highly uniform surface over a large area ($2{\times}1\;mm^2$) was obtained. Second, optimization of inductive coupled plasma-reactive ion etching (ICP-RIE) was carried out to achieve anisotropy and high etch rate. The dry etching carried out using a gas mixture of SiCl4 and Ar, each having a flow rate of 10 sccm and 40 sccm, respectively with an RF power of 50 W, ICP power of 400 W and chamber pressure of 2 mTorr was the optimum etching condition. Last, the rest of GaAs substrate was successfully removed by highly selective backside wet etching with pH adjusted solution of citric acid and hydrogen peroxide. Citric acid/hydrogen peroxide etching solution having a volume ratio of 5:1 was the best etching condition which provides not only high selectivity of 235:1 between GaAs and AlAs but also good etching profile [3]. The fabricated transmission EAM array have an amplitude modulation of more than 50% at the bias voltage of -9 V and maintains high uniformity of >90% over large area ($2{\times}1\;mm^2$). These results show that the fabricated transmission EAM with substrate removed is an excellent candidate to be used as an optical shutter for HD 3D imaging application.

  • PDF

Comparison and discussion of MODSIM and K-WEAP model considering water supply priority (공급 우선순위를 고려한 MODSIM과 K-WEAP 모형의 비교 및 고찰)

  • Oh, Ji-Hwan;Kim, Yeon-Su;Ryu, Kyong Sik;Jo, Young Sik
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.463-473
    • /
    • 2019
  • This study compared the characteristics of the optimization technique and the water supply and demand forecast using K-WEAP (Korea-Water Evaluation and Planning System) model and MODSIM (Modified SIMYLD) model considering wtaer supply priority. Currently, The national water resources plan applied same priority for municipal, industrial and agricultural demand. the K-WEAP model performs the ratio allocation to satisfy the maximum satisfaction rate, whereas the MODSIM model should be applied to the water supply priority of demands. As a result of applying the priority, water shortage decreased by an average of $1,035,000m^3$ than same prioritized results. It is due to the increase of the return flow rate as the distribution of Municipal and industrial water increases. Comparing the analysis results of K-WEAP and MODSIM applying the priorities, the relative error was within 5.3% and the coefficient of determination ($R^2$) was 0.9999. In addition, if both models provide reasonable water balance analysis results, K-WEAP is superior to GUI convenience for model construction and data processing. However, MODSIM is more effective in simulation time efficiency. It is expected that it will be able to carry out analysis according to various scenarios using the model.

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Development of Ceramide NP Analysis Method in Cosmetic Formulations Using Liquid Chromatography (액체크로마토그래피를 이용한 화장품 제형 내 세라마이드엔피 분석법 확립)

  • Ye Ji Lee;Young Eun Kim;Jae Yong Seo;Hyun Dae Cho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.291-298
    • /
    • 2023
  • In this study, a quantitative analysis method was developed using high-performance liquid chromatography (HPLC) to analyze the content of ceramide NP in lotion, cream, and cleanser formulations in cosmetics. The analysis was performed using a C18 column, and the mobile phase was set at a ratio of 70 : 30 for acetonitrile and methanol, the flow rate was set to 0.8 mL/min, and the column temperature was set to 20 ℃. The method was verified by analyzing specificity, linearity, limit of detection, limit of quantitation, accuracy, and precision in accordance with the ICH guidelines. As a result of validating the method, the linearity of the calibration curve was excellent (R2 = 0.99984). The accuracy of the lotion, cream, and cleanser formulations was confirmed with a recovery rate ranging from 95.11% to 100.48%. The precision analysis showed a low relative standard deviation (RSD) of less than 0.26%. The limit of detection was 0.902 ㎍/mL, and the limit of quantitation was 2.733 ㎍/mL. Through this quantitative analysis method of ceramide NP applied in cosmetics, it is expected to assist in the quality control of products by enabling measurement even when it is difficult to separate the main peak due to the influence of interfering substances.

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.

A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine (직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구)

  • Yoo, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • It has been generally recognized that $N_2O$(Nitrous Oxide) emission from marine diesel engines has a close correlation with $SO_2$(Sulfur Dioxide) emission, and diversity of fuel elements using ships affects characteristics of the $N_2O$ emission. According to recent reports, in case of existence of an enough large NO(Nitric Oxide) generated as fuel combustion, effect of the $SO_2$ emission in exhaust gas on the $N_2O$ formation is more vast than effect of the NO. Therefore, $N_2O$ formation due to the $SO_2$ element operates on a important factor in EGR(Exhaust Gas Recirculation) systems for NOx reduction. An aim of this experimental study is to investigate that intake gas of the diesel engine with increasing of $SO_2$ flow rate affects $N_2O$ emission in exhaust gas. A test engine using this experiment was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition was set up at a 75% load. A standard $SO_2$ gas with 0.499%($m^3/m^3$) was used for changing of $SO_2$ concentration in intake gas. In conclusion, the diesel fuel included out sulfur elements did mot emit the $SO_2$ emission, and the $SO_2$ emission in exhaust gas according as increment of the $SO_2$ standard gas had almost the same ratio compared with $SO_2$ rate in mixture inlet gas. Furthermore, the $N_2O$ element in exhaust gas was formed as $SO_2$ mixture in intake gas because increment of $SO_2$ flow rate in intake gas increased $N_2O$ emission. Hence, diesel fuels included sulfur compounds were combined into $SO_2$ in combustion, and $N_2O$ in exhaust gas should be generated to react with NO and $SO_2$ which exist in a combustion chamber.

Increase of Production Ratio of Pre-selected Superior Dairy Female Offspring by Combination of OPU derived Oocytes and X-bearing Semen

  • Kim, Seong-Su;Choi, Byung-Hyun;Lee, Kyeong-Lim;Jin, Jong-In;Suh, Tae-Kwang;Son, Cheol-Ho;Park, Chan-Ho;Shin, Seung-Oh;Han, Kwang-Jin;Lim, Hyun-Tae;Cho, Kyu-Woan;Kong, Il-Keun
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • This study was designed to evaluate the possibility of increase through dairy female offspring's ratio by transfer of pre-selected transferrable blastocyst that was produced by pre-selected X-bearing semen with OPU derived oocytes. Elite dairy female cow is demanded strongly compared with male, the so called, farmer wants to produce only an elite female dairy offspring as a candidate female dairy cow for producing milk. In our study, we selected 2 elite dairy bull semen from National Agricultural Cooperative Federation to pre-select X-bearing semen and 5 elite dairy female cows as donor for collecting of OPU derived oocytes. OPU derived embryo production system was carried out an aspiration of immature oocytes from 5 donor cows 2 times per week, total 200 times for 2 to 7 months by an ultrasonographic guided follicular aspiration system and then produced in vitro-produced blastocysts by in vitro maturation, fertilization and culture. Dairy donor semen selected H-319, 320 bull in National Agricultural Cooperative federation was sorted X-bearing semen by flow-cytometer and frozen for using IVF with OPU derived oocytes. Donor cows were selected 5 elite dairy cows from Gyeongju Dairy Cow Community and then disease tests such as 4 kinds of disease before selecting was checked. Oocyte proportion of grade 1 to 3 from total collected oocytes was significantly lower in donor A and B than those in donor C, D and E (82.16 and 70.03% vs. 90.0, 91.78 and 93.57%), respectively (p<0.05). However, number of oocytes per session in donor A, C and E was significantly higher than those in donor B and D ($7.77{\pm}3.26$, $5.85{\pm}2.10$ and $7.03{\pm}2.14$ vs. $4.68{\pm}2.61$ and $5.21{\pm}1.97$ oocytes), but donor A was significantly higher than donor C (p<0.05). Development to blastocyst in donor B, C and E was significantly higher than those in donor A and D (31.0, 25.0 and 25.0% vs. 14.3 and 4.5%), but donor A was not different in donor C and E (p<0.05). Nine out of 10 blastocysts (90.0%) derived from OPU blastocysts were confirmed male embryos that was induced with Y-bearing semen to confirm sex ratio only. Total 96 blastocysts derived from female bearing semen were transferred into synchronized recipients and then confirmed 42 recipients (43.8%) pregnancy rate, 36 offspring (37.5%) and 91.7% female sex ratio (33 female vs. 3 male offspring). Taken together all data, elite dairy female offspring could be produced effectively by in vitro production system between pre-selected x-bearing semen and OPU derived oocytes that would be influential breeder in the breeding of dairy farm to increase effectively elite dairy offspring ratio as well as net income in the dairy farmer.

Development of Nutrient Solution for Hydroponics of Cruciferae Leaf Vegetables Based on Nutrient-Water Absorption Rate and the Cation Ratio (양수분 흡수율과 양이온 비율에 의한 배추과 엽채류 수경 배양액 개발)

  • Choi Ki Young;Yang Eun-Young;Park Dong-Kum;Kim Young Chul;Seo Tae Cheol;Yun Hyung Kweon;Seo Hyo Duk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2005
  • This study was conducted to develop the suitable nutrient solutions for variable Cruciferae leafy vegetables. l/2, 1 and 3/2 strength of nutrient solution recommended by National Horticultural Research Institute were supplied to plants in deep flow technique systems during 25 days. The growth of pak-choi and leaf mustard 'Asia curled' was highest in the 3/2 strength, and kaie 'TBC' in the 1 strength. Mean cation ratio of nutrient solution for pak-choi, leaf mustard and kale was K $49.5\%$, Ca $35.8\%$ and Mg $14.7\%$, which was obtained by calculating the uptake rates of water and nutrients. Suitable composition of the nutrient solution for Cruciferae leafy vegetables was N 14, P 3, K 6.8, Ca 4.8, $Mg 2m{\cdot}L^{-1}$. To examine the suitability of nutrient solution developed for Cruciferae vegetables (NSC), plants were grown 4 times from Sep. 2003 to Oct. 2004. When plants were grown in NSC, relative growth rate increased 1.1 to 2.5 times and vitamin C content 1.06 to 1.52 times. The proper plants to apply NSC for functional leaf vegetable production were leaf mustard 'Asia recurled', 'Redcurled' and 'Pamagreen', kale 'TBC', 'Portugal' and 'Hanchu collard', leaf broccoli 'New green', pak-choi, baby cabbage 'Red king' and 'Green king', flowering red chinese cabbage and Korean cabbage.