• Title/Summary/Keyword: Flow Pulsation

Search Result 186, Processing Time 0.032 seconds

A Numerical Simulation on Mixing Enhancement by Inlet Flow Pulsation in a Micro Conduit (마이크로 유로에서 맥동유동에 의한 혼합촉진에 관한 수치해석)

  • Kim, Seo-Young;Rhee, Gwang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-237
    • /
    • 2003
  • A numerical study has been conducted to investigate the effect of an inlet flow pulsation on mixing of two solutions with different concentrations in a micro conduit. We treat an unsteady, incompressible and two-dimensional flow through a micro conduit by adopting the momentum equations with the electrostatic force due to streaming current and the concentration equation. The feasibility of the inlet flow pulsation to enhance the mixing process inside the micro conduit is carefully examined by varying the inlet pulsation frequency. When a low-frequency pulsation is induced at the inlet, the interface between two solutions with different concentrations becomes wavy, which results in mixing enhancement. As the pulsation frequency increases, the waviness of the interface becomes meager, and the concentration gradients at the interface approach the value for the non-pulsating steady flow.

  • PDF

Changes in Pressure-Flow Control Characteristics of Shunt Valves by Intracranial Pressure Pulsation: an In Vitro Study

  • Lee, Chong-Sun;Kim, Joo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.193-197
    • /
    • 2005
  • Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of intracranial pressure pulsation on their flow control characteristics. Five commercial shunt valves were tested in the flow loop that simulates pulsed flow under pressure pulsation. As 20cc/hr of flow rate was adjusted at a constant pressure, application of $40mmH_2O$ of pressure pulse increased the flow rate by $67.9\%.$ As a 90cm length catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to $17.5\%.$ As the flow rate was adjusted to 40cc/hr at a constant pressure, increase in the flow rate was $51.1\%$ with the same pressure pulsation of $40mmH_2O$. The results indicated that pressure-flow control characteristics of shunt valves implanted above human brain ventricle is quite different from those obtained by syringe pump test at constant pressures right after manufacture. The influence of pressure pulsation was observed to be more significant at low flow rate and the flexibility of the outlet silicone catheter was estimated to significantly reduce flow increase due to pressure pulsation.

CFD Analysis of Pressure Pulsation and Internal Flow for a Positive Displacement Hydraulic Turbine (CFD에 의한 용적형수차의 압력맥동 및 내부유동 해석)

  • Choi, Young-Do;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.687-693
    • /
    • 2007
  • It has been known that one of the main obstacles of improving the performance of positive displacement hydraulic turbine is pressure pulsation which occurs at the regions upstream and downstream of the turbine. In order to suppress the pressure pulsation. occurrence reason of the pressure pulsation should be understood in detail Therefore. this study aims to establish a CFD analysis method by which the phenomena of unsteady pressure pulsation can be examined with high accuracy. Internal flow field of the turbine is modeled simply to generalize the relation between the pressure pulsation and internal flow. The results show that the Present CFD method adopting unsteady calculation can be applied successfully to the analysis of the Phenomena of Pressure Pulsation. Occurrence of the Pressure pulsation is due to the difference of the rotational speed of turbine rotors When driving rotor rotates by uniform speed and fellowing rotor rotates by variable speed, very large Pressure pulsation occurs within the turbine periodically.

Flow Control and Heat Transfer Enhancement from a Heated Block by an Inflow Pulsation (I) Flow Field Computation (입구 유동 가진에 의한 사각 발열체 주위의 유동제어 및 열전달촉진 (I) 유동장 수치해석)

  • 리광훈;김서영;성형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.592-598
    • /
    • 2002
  • The characteristics of a pulsating flow field from a heated block representing heat-dissipating electronic component in a channel have been numerically investigated. At the channel inlet a pulsating sinusoidal flow is imposed. The Reynolds number based on the channel height (H) is fixed at Re=500, and the forcing frequency is varied in the range of $0\leqSt\leq2$. Numerical results on the time-dependent flow field are obtained and averaged over a cycle of pulsation. The effect of the important governing parameters such as the Strouhal number is investigated in detail. The results indicate that the recirculating flow behind the block is substantially affected by the pulsation frequency. To characterize the periodic vortex shedding due to the inflow pulsation, numerical flow visualizations are carried out.

Changes in The Pressure-Flow Control Characteristics of Shunt Valves Under Brain Pressure Pulsation (뇌압 펄스하에서 션트밸브의 압력-유량제어 특성곡선의 변화)

  • Hong Yisong;Lee Chong-Sun;Jang Jongyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.699-702
    • /
    • 2002
  • Shunt valves implanted in the subcutaneous tissue of brain to treat patient with hydrocephalus were numerically simulated to investigate influence of pressure pulsation on their flow control characteristics. Shunt valves are subjected to pressure variation since ventricles enclosing the brain are under pressure pulsation rather than uniform pressure due to blood pressure variation. We modeled flow orifice through shunt valve and imposed pulsating pressure and valve diaphragm movement to compute flow through the valve. The results of our study indicated that flow rate increased by $40{\%}$ by introducing pressure pulsation and diaphragm movement on the shunt valve. Our results demonstrate the pressure-flow control characteristics of shunt valves unplanted above human brain may be quite different from the characteristics obtained by syringe pump test with uniform pressure and no diaphragm movement.

  • PDF

Effect of Air Admission on Pressure Pulsation in a Francis Turbine (급기가 프란시스 수차의 수압 맥동에 미치는 영향)

  • Jeon, Yunheung;Park, Sihoon;Choi, Hansu;Park, Jungwan
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.9-15
    • /
    • 2014
  • In this study pressure and shaft torque pulsation were measured with variation of head and flow during the model test for a 15 MW Francis Turbine. Pressure pulsations were measured at the inlet of the spiral casing and 4 points in the cone of the diffuser and shaft torque pulsation at the upper position of the turbine. The maximum amplitude of pressure pulsation appeared 2.03% of the maximum rated head with the frequency of 25% of the rated revolution and at the guide vane opening of $10^{\circ}$. Shaft torque pulsation appeared 0.01% of the rated shaft torque, fairly low value. Air was admitted through the cone and pressure pulsation gradually decreased with increase of air flow and kept nearly constant after 5% of the rated flow. A new Francis turbine of which specific speed is 115 m-kW had been designed to rehabilitate the old one and the model test was performed at EPFL. The commercial code, STAR-$CCM^+$ was used for numerical simulation of flow.

Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant (복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책)

  • Kim, Yeon-Whan;Kim, Jae-Won;Park, Hyun-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

A Study on the Pulsation Pressure Reduction for the Hydraulic System of Medium-Large Excavator (중대형 굴삭기 유압시스템의 압력 맥동 저감 연구)

  • Kim, Young-Hyun;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.421-426
    • /
    • 2010
  • With hydraulic noise test facility, a variety of tests were performed to investigate the pulsation pressure generation mechanism and its transmission characteristics and to derive the noise control methodology. Many experiments were carried out by changing average pressure, flow rate, pump speed, hose length and MCV spool condition. From the test results, the correlations between pulsation pressure and other design parameters, such as static pressure, flow rate and MCV spool opening area and length of hose, were found out. And also each contribution factors were evaluated from the regression analysis. By changing hose length, the pulsation pressure resonance phenomenon was investigated. In order to find out the pulsation pressure reduction measures pulsation pressure analysis, such as pulsation pressure of hydraulic pump itself and pulsation pressure of hydraulic system, by using AMESim were studied. In addition hydraulic silencer was developed based on the Helmholtz resonator. And its performance was evaluated by installing the silencer at the excavator.

  • PDF

Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line (사판식 피스톤 펌프-관로계에서의 맥동류 해석)

  • Choi, Young-Hak;Lee, Ill-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

A Study on the Vibration Responses of Piping Systems by Pulsation Flow (맥동류에 의한 파이프 계의 진동응답에 관한 연구)

  • Lee, Dong-Myung;Choi, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.68-75
    • /
    • 1997
  • In this study, to investigate vibration response of piping systems due to pulsation flow, a transfer matrix method is presented. Fluid-pipe interaction is formulated using wave equation for flow velocity and pressure, which depends on position and time. From the wave equation, transfer matrix is obtained. The dynamic responses of piping systems induced by pulsation flow appeared to depend upon fluctuation fluid velocity and pressure occurrnece from pulsation, and beating phenomena were observed near the resonance. Consequently, the dynamic behaviors of piping systems appeared to the same as response characteristics of the inside flow pattern of the pipe, and are determined by the inside fluid flow.

  • PDF