• 제목/요약/키워드: Flow Pattern Visualization

검색결과 151건 처리시간 0.028초

원관내 수직상향 2상유동에서 고분자물질이 유동양식에 미치는 영향 (The Effect of Flow Patterns with Polymer Additivies From Two Phase Flow at Vertical up Ward in Circular Tube)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.505-514
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure void fraction and channel geometry. We classify the flow pattern by measuring the output signal of the conductivity probe. under the classified flow pattern we mount a visualization equipment on the test section and take pictures. We vary the concentration of pure solvent and polymer to measure local void fraction. We know that the maximum point position of local void fraction distribution move from the center of the pipe to the wall of the pipe as JSL increase when JSA is constant in two phase flow. But we find that the maximum point position of local void friction move from the wal of the pipe to the center of the pipe when polymer concentration increase.

  • PDF

해저면에 설치된 2차원 복합해저관로 주위의 유동특성에 관한 실험적 연구 (A Study of Flow Pattern around the Two-Dimensional Dual Subsea Pipeline on Sea Bottom)

  • 나인삼;조철희;정우철;김두홍
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.122-127
    • /
    • 2001
  • As pipelines are often used to transport gas, oil, water and oil products, there are more than one pipeline installed in the offshore field. The size and space of pipelines are various depending on the design specifications. The pipelines are to be designed and installed to secure the stability to external loads during the installation and operation period. The flow patterns are very complex around the pipelines being dependent on incoming flow velocity, pipelines size and space. To investigate the flow patterns, number of experiment are conducted with visualization equipment in a circulating water channel. The flow motion and trajectory were recorded from the laser reflected particles by camera. From the experiment the flow patterns around spaced pipelines were obtained. Also pressure gradient was measured by mano-meter to estimate the hydrodynamic forces on the behind pipeline. The results show that the various sizes and spaces can be affected in the estimation of external load. The complex flow patterns and pressure gradients can be effectively used in the understanding of flow motion and pressure gradient.

  • PDF

유동 가시화와 LDV 측정을 이용한 흡기계 내의 유동장에 관한 실험적 해석 (An Experimental Analysis of the Flow Field in an Air Induction System by Flow Visualization and LDV Measurements)

  • 유성출
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.102-111
    • /
    • 2001
  • To describe the air flow characteristics within an air cleaner cover and mass air flow sensor (MAFS) entry region installed in a 3.0L engine air induction system, flow visualization, velocity and turbulence intensity measurements were taken in several view planes. A detailed knowledge of the interaction between the design parameters and the flow structures will enhance our understanding of the motions within the flow field and enable engineers to optimize the induction system and reduce the signal-to-noise ratio in the MAFS output. Emphasis is placed on the analysis of coherent motions and the controlling parameters which affect the air flow in the MAFS entrance region over a flow rate of 13-240 kg/hr. The high speed motion pictures illustrated that the air flow generated within the air cleaner cover under steady state condition is quite complex. In both axial and radial planes of the main passage it was found that the flow pattern is remarkably influenced by the air cleaner cover and main passage configuration. A comparison of the flow patterns and measurements in the original and modified air cleaner cover is presented. Measurements from the MAFS indicated an significant reduction in pressure drop and signal noise for the modified cover as compared with the original cover, over an air flow rate of 13-240 kg/hr.

  • PDF

증발하는 이성분혼합물 액적의 유동장 해석 (Investigation of Internal Flow Fields of Evaporating of Binary Mixture Droplets)

  • 김형수
    • 한국가시화정보학회지
    • /
    • 제15권2호
    • /
    • pp.21-25
    • /
    • 2017
  • If a liquid droplet evaporates on a solid substrate, when it completely dries, it leaves a peculiar pattern, which depends on the composition of the liquid. Not only a single component liquid but also complex liquids are studied for a different purpose. In particular, a binary mixture droplet has been widely studied and used for an ink-jet printing technology. In this study, we focus on investigating to visualize the internal flow field of an ethanol-water mixture by varying a concentration ratio between two liquids. We measure the in-plane velocity vector fields and vorticities. We believe that this fundamental study about the internal flow field provides a basic idea to understand the dried pattern of the binary mixture droplet.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • 유성출
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

전자 스체클 패턴 간섭법을 이용한 반경방향 대칭 유체의 정량적 가시화 및 물성치 측정에 관한 연구 (A Study on Quantitative Visualization and Measurement of Physical Properties of Radial Symmetric Fluids Using Electronic Speckle Pattern Interferometry)

  • 강영준;채희창;김경석
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.217-224
    • /
    • 2002
  • It is very important to measure and visualize the changes in the physical properties of fluid flow because this is the foundation of measurement techniques used in aerodynamics, heat transfer, plasma diagnostics, and stress analysis of transparent models. The optical methods are advantageous over probe-based techniques in the optical methods are of high speed, non-contact and are capable of providing full-field results with high spatial resolution. Therefore we propose the electronic speckle pattern interferometry(ESPI) that gives us a solution to overcome those limitations. In this paper the experimental results show qualitative and quantitative visualization of changes in the physical properties of the candle and alcohol lamp with 3D plotting. And we obtained the refractive index, mass density and temperature distribution of fluids. The results clearly show the process of flow phenomena and give the feasibility of quantitative interpretation of gasdynamics.

잠자리 유형 날개에 대한 흐름 가시화 (Flow Visualization for a Dragonfly Type Wing)

  • 김송학;김현석;장조원;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1586-1591
    • /
    • 2004
  • Flow visualization experiments have been performed to investigate the effects of phase lag, reduced frequency qualitatively by examining wake pattern on a dragonfly type wing. The model was built with a scaled-up, flapping wings, composed of paired wings with fore- and hindwing in tandem, that mimicked the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique, and an electronic device was mounted to find the exact positional angle of wing below the tandem wings, which amplitude is ranged from $-16.5^{\circ}$ to $+22.8^{\circ}$. Phase lag applied on the wings is $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The reduced frequency is 0.15, 0.3 and 0.45 to investigate the effect of reduced frequency. It is inferred through observed wake pattern that the phase lag clearly plays an important role in the wake structures and in the flight efficiency as changing the interaction of wings. The reduced frequency also is closely related to wake pattern and determines flight efficiency.

  • PDF

반대방향 충돌제트에 의한 원형 챔버 내 혼합거동에 대한 전산가시화 (Numerical visualization of mixing in a circular chamber by two opposite impinging jets)

  • 하미드 카바시안;김영우;이인범;한범정;정용채;김경천
    • 한국가시화정보학회지
    • /
    • 제14권3호
    • /
    • pp.32-37
    • /
    • 2016
  • In this study, the mixing process of two distinct flow is numerically investigated. Two flow with different physical properties (resin and hardener) are mixed through the opposing mixing jets. At a high pressure mixing process, the high speed flow is provided by two in-line nozzles. In the case of numerical modeling, Reynolds-Averaged Navier-Stokes Equations (RANS) is conducted to model the flow pattern inside the chamber. Additionally, SST k-omega turbulence model is selected to predict the kinetic energy of flow in impingement zone. The results show that mixing of two distinct flows would be efficient if the velocity of jet is high enough and nozzle diameter is a predominant parameter. Also, this velocity would create higher shear stress between two distinct flows which increases the mixing quality as well as strength of formed vortices. Eventually, the histogram of concentration fraction of resin is examined in order to show the quality of mixing and the range of concentration fractions in the output of chamber.

엔진 내 냉각수 유동형태가 연소실 벽면온도에 미치는 영향에 관한 연구 (Effect of Coolant Flow Pattern on Metal Temperature of Combustion Chamber)

  • 민병순;최재권
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.14-21
    • /
    • 1993
  • The effect of coolant flow pattern on the metal temperature of the combustion chamber was studied in 1.5L and 1.8L gasoline engines. One of the main important points in the design of the water jacket is the increase of the coolant flow velocity. In this paper, the water jackets of the cylinder head and the cylinder block were visualized for the purpose of improving the coolant flow pattern. By the use of this technique, the optimal design of the size and th location of the water transfer fole was possible. And, to lower the metal temperatures of the thermally critical parts, the drilled water passages were employed. To investigate of effect of the improved flow pattern and the drilled water passages, the metal temperatures of the combustion chamber were measured. As a result of the temperature measurement, it was found out that both the change of flow pattern and the drilled water passages have significant effect on the reduction of the peak metal temperature.

  • PDF

대칭형상의 평판 전극 주위의 비대칭 절연유체 유동 (Asymmetric Electrohydrodynamic Flow of Dielectric Liquid around Symmetric Coplanar Electrodes)

  • 백광현;조동식;서용권
    • 한국가시화정보학회지
    • /
    • 제11권1호
    • /
    • pp.48-52
    • /
    • 2013
  • This paper presents experimental observation of asymmetric electrohydrodynamic flow generated around a pair of symmetric coplanar electrodes. Electrodes are attached on the bottom of the cavity containing a dielectric liquid, i.e., a mixture of dodecane and 0.5% wt Span80. In the first experiment, an AC voltage of 1500 V is applied with the frequency varying in the range 10~500 hz and the left electrode being grounded. The flow patterns show that the center line of vortices is unexpectedly tilted to the left side. If the right side electrode is grounded, the center line is tilted to the right side. The magnitude of the fluid velocity shows an irregular variation with the frequency in the range 10 Hz~100 Hz, beyond which it simply decays. In the second experiment, we applied fixed AC with 1000 V and 60 Hz superposed by DC voltage varying in the range -1000 V ~ +1000 V. The center line of the flow pattern is tilted to the right side with positive DC voltage and to the left side with negative DC. We have managed to show that the flow pattern can be symmetric with a suitable combination of DC and AC, e.g., DC 850 V plus AC 1000 V with the frequency 10 Hz.