• Title/Summary/Keyword: Flow Passage

Search Result 594, Processing Time 0.019 seconds

Thermal and Flow Analysis inside the Header of a Parallel Flow Heat Exchanger (평행류 열교환기의 헤더내 열유동 해석)

  • 이관수;오석진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.802-809
    • /
    • 2000
  • This study numerically analyzes the thermal and flow characteristics inside the header in PFHE(parallel-flow heat exchanger) by employing a three-dimensional turbulence modeling. The following quantities are examined by varying the injection angle of the working fluid, the location of entrance and the shape of entrance: flow nonuniformity, heat transfer rate, and flow distribution in each passage. The result shows that the degree of significance among the parameters affecting the header part is in the order of the injection angle, the shape of entrance, and the location of entrance. The result also indicates that heat transfer rates compared to the reference model are increased by about 152% for the angle of injection of -$20^{\circ}C$, by about 127% for the shape of entrance with right and left long rectangular form, and by about 108% for the location of entrance located at the lowest Position.

  • PDF

Experimental Study on the Mean Flow Characteristics of Forward-Curved Centrifugal Fans

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1728-1738
    • /
    • 2001
  • Measurements have been made in an automotive HVAC b1ower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements stowed that performance coefficients are strongly influenced by flow characteristics at the throat region. The main flow features ware common in both fans, but improved performance is achieved with tole new fan rotor, particularly in lower flow rate legions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior ware most important.

  • PDF

Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors (축류터빈 동익 내부의 누설유동에 관한 수치해석)

  • Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages was carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry was accurately modeled adopting the embedded H grid system. An explicit four-stage Runge-Kutta scheme was used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, were interpreted and compared with the experimental data from the Penn State turbine stage. The predictions for major features of the flow field have been found to be in good agreement with the experimental data.

  • PDF

Heat and Flow Analysis of a Parallel Flow Heat Exchanger Using Porous Modeling (다공성 모델링을 이용한 평행류 열교환기의 열.유동 해석)

  • Jeong, Gil-Wan;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1784-1792
    • /
    • 2001
  • Numerical analysis on a parallel flow heat exchanger(PFHE) is performed using 2 dimensional turbulent porous modeling. This modeling can consider three-dimensional configuration of passage (flat tube with micro-channels), and the stability and accuracy of numerical results are improved. The geometrical parameters(e.g., the position of separators, inlet/outlet, and porosity of passages of a PFHE) are varied in order to examine the flow and thermal characteristics and flow distribution of the single phase multiple passages system. The flow non-uniformities along the paths of the PFHE are observed to evaluate the thermal performance of the heat exchanger. The location of inlet affects the heat transfer, and the location of outlet affects the pressure drop. The porosity with the optimum thermal performance is around 0.53.

Research on The Utility of Acquisition of Oblique Views of Bilateral Orbit During the Dacryoscintigraphy (눈물길 조영검사 시 양측 안 와 사위 상 획득의 유용성에 대한 연구)

  • Park, Jwa-Woo;Lee, Bum-Hee;Park, Seung-Hwan;Park, Su-Young;Jung, Chan-Wook;Ryu, Hyung-Gi;Kim, Ho-Shin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.76-81
    • /
    • 2014
  • Purpose: Diversity and the lachrymal duct deformities and the passage inside the nasal cavity except for anterior image such as epiphora happens during the test were able to express more precisely during the dacryoscintigraphy. Also, we thought about the necessity of a method to classify the passage into the naso-lachrymal duct from epiphora. Therefore, we are to find the validity of the method to obtain both oblique views except for anterior views. Materials and Methods: The targets of this research are 78 patients with epiphora due to the blockage at the lachrymal duct from January 2013 to August 2013. Average age was $56.96{\pm}13.36$. By using a micropipette, we dropped 1-2 drops of $^{99m}TcO4^-$ of 3.7 MBq (0.1 mCi) with $10{\mu}L$ of each drop into the inferior conjunctival fold, then we performed dynamic check for 20 minutes with 20 frames of each minute. In case of we checked the passage from both eyes to nasal cavity immediately after the dynamic check, we obtained oblique view immediately. If we didn't see the passage in either side of the orbit, we obtained oblique views of the orbit after checking the frontal film in 40 minutes. The instrument we used was Pin-hole Collimator with Gamma Camera(Siemens Orbiter, Hoffman Estates, IL, USA). Results: Among the 78 patients with dacryoscintigraphy, 35 patients were confirmed with passage into the nasal cavity from the anterior view. Among those 35 patients, 15 patients were confirmed with passage into the nasal cavity on both eyes, and it was able to observe better passage patterns through oblique view with a result of 8 on both eyes, 2 on left eye, and 1 on right eye. 20 patients had passage in left eye or right eye, among those patients 10 patients showed clear passage compared to the anterior view. 13 patients had possible passage, and 30 patients had no proof of motion of the tracer. To sum up, 21 patients (60%) among 35 patients showed clear pattern of passage with additional oblique views compared to anterior view. People responded obtaining oblique views though 5 points scale about the utility of passage identification helps make diagnoses the passage, passage delayed, and blockage of naso-lachrymal duct by showing the well-seen portions from anterior view. Also, when classifying passage to naso-lachrymal duct and flow to the skin, oblique views has higher chance of classification in case of epiphora (anterior:$4.14{\pm}0.3$, oblique:$4.55{\pm}0.4$). Conclusion: It is considered that if you obtain oblique views of the bilateral orbits in addition to anterior view during the dacryoscintigraphy, the ability of diagnose for reading will become higher because you will be able to see the areas that you could not observe from the anterior view so that you can see if it emitted after the naso-lachrymal duct and the flow of epiphora on the skin.

  • PDF

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Approximation for the coherent structures in the planar jet flow (평면 제트류 응집구조의 근사적 표현에 관한 연구)

  • 이찬희;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.751-762
    • /
    • 1995
  • The snapshot method is introduced to approximate the coherent structures of planar jet flow. The numerical simulation of instantaneous flow field is analyzed by SIMPLE algorithm. An ensemble of realizations is collected using a sampling condition that corresponds to the passage of a large scale vortex at positions 4 and 6 diameters downstream from the nozzle. With snapshot mothod we could treat the data efficiently and approximate coherent structures inhered in the planar jet flow successfully 94% of total turbulent kinetic energy with 10 terms of Karhunen-Loeve expansions. Finally, In accordance with the recent trend to try to explain and model turbulence phenomena with the existence of coherent structures, in the present study, we express the underlying coherent structures of planar jet flow in the minimum number of modes by calculating Karhunen-Loeve expansions in order to improve to understanding of jet flow and to make the information storage and management in computers easier.

An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV (PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구)

  • 김성균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.22-28
    • /
    • 2002
  • Steady state flow calculations are conducted for the newly-designed turbo-pump inducers to validate the performance of Tascflow code. Hydrodynamic performance is evaluated, and structures of the passage flow and leading edge recirculation are also investigated. The calculated results show good coincidence with the experimental data of the static pressure performance and velocity profiles near the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure losses. Amount of pressure losses from the upstream to the leading edge corresponds to that of pressure losses through the whole blade. The total viscous losses are considerably large due to the strong secondary flow.

Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors (축류터빈 동익 내부의 누설유동에 관한 수치해석)

  • Chung H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.171-175
    • /
    • 2003
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages is carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry is accurately modeled adopting the embedded H grid topology. An explicit four-stage Runge-Kutta scheme is used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, are interpreted and compared with the experimental data from the Penn State turbine stage. Good agreement between the experimental data and the numerical prediction was achieved in the sense of the major features of the flow fields.

  • PDF