• Title/Summary/Keyword: Flow Mechanism

Search Result 2,323, Processing Time 0.027 seconds

Aeroacoustic Characteristics of Cavity Resonance on Very Low Subsonic Flows (저아음속 유동에 놓여진 개방형 공동의 공력소음 특성)

  • Koh, Sung-Ryong;Moon, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1921-1926
    • /
    • 2004
  • The tone generation mechanism and aeroacoustic characteristics have been investigated for flow over open cavities using direct acoustic numerical simulations. Physically the tone generation mechanism of open cavity is more complicated when flow instabilities are excited by the correlation effects of flow parameters. From non-dimensional parameter studies in very low Mach number range, it is shown that characteristics of cavity resonance inherently involve typical acoustic pattern at each discrete tone frequency, and especially in laminar flow the fundamental tone frequency is determined within flow instability criterion of laminar shear layer as well as cavity geometry, length to depth ratio.

  • PDF

A Preliminary Study on CF4 Decomposition Reaction Mechanism Using High Temperature Flow Reactor (고온 유동 반응기를 이용한 CF4 분해 반응기구에 대한 선행 연구)

  • Kim, Yoeng-Jae;Lee, Dae Keun;Kim, Seung Gon;Noh, Dong-Soon;Ko, Chang-Bog;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.157-159
    • /
    • 2015
  • In this study, $CF_4$ decomposition was experimentally investigated in a high temperature flow reactor. Effects of temperature, reactant composition and concentration, and residence time on its decomposition into other stable species were analyzed. Then the results were compared to numerical results obtained using Chemkin Plug Flow Reactor model with Princeton Chemistry. As a preliminary result higher decomposition rate is obtained for higher reactor temperature and long residence time when proper reactants are supplied.

  • PDF

Flow Mechanism of Dilatant Systems. (Ⅰ) Starch Suspension in Water

  • Bang, Jeong-Hwang;Kim, Eung-Ryul;Hahn Sang-Joon;Ree, Tai-kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.212-217
    • /
    • 1983
  • Depending on the range of shear rates, temperatures and concentrations, the potato starch suspension in water behaves as a typical dilatant system. The flow curves of the suspension at various concentrations and temperatures were obtained by using a Couette type rotational viscometer. The flow mechanism of the suspension is explained by a structure model of starch granules in the suspension. Based on the experimental results, a general flow equation for the dilatant system is proposed. By analyzing the temperature dependency of the relaxation time, the activation enthalpy and activation entropy for flow in the starch-water suspension were calculated, the former being about 10 kcal/mol.

A Suggested Mechanism of Significant Stall Suppression Effects by Air Separator Devices in Axial Flow Fans

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Radial-vaned air separators show a strong stall suppression effect in an axial flow fans. From a survey of existing literature on the effects and the author's data, a possible mechanism for the significant effects has been proposed here. The stall suppression is suggested to have been achieved by a combination of the following several effects; (1) suction of blade and casing boundary layers and elimination of embryos of stall, (2) separation and straightening of reversed swirling flow from the main flow, (3) induction of the fan main flow toward the casing wall and enhancement of the outward inclination of meridional streamlines across the rotor blade row, thus keeping the Euler head increase in the decrease in fan flow rate, and (4) reinforcement of axi-symmetric structure of the main flow. These phenomena have been induced and enhanced by a stable vortex-ring encasing the blade tips and the air separator. These integrated effects appear to have caused the great stall suppression effect that would have been impossible by other types of stall prevention devices. Thus the author would like to name the device "tip-vortex-ring assisted stall suppression device".

Flow Mobility of PMIPv6 for Multi-Interface Mobile Nodes (PMIPv6 환경에서 Multi-Interface 단말의 플로우 이동성 지원 방안)

  • Lee, Dong-Min;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1168-1174
    • /
    • 2011
  • The IEFT has recently considered to provide flow mobility for multi-interface MN in the PMIPv6. In this paper, we proposed an extended BCE of the LMA and a novel mechanism for flow mobility of PMIPv6. With our proposal BCE and mechanism, the LMA can route packets by the flow label and hence packet loss during handover can be eliminated. Also, to validate our flow mobility scheme, we designed and implemented the PMIPv6 packet data unit and database of both LMA and MAG, and configured a testbed for flow mobility in PMIPv6. And the support of flow mobility was configured with the network connectivity test in our testbed. According to the Wireshark results, we can see that our proposed scheme works wells for flow mobility in PMIPv6.

OFPT: OpenFlow based Parallel Transport in Datacenters

  • Liu, Bo;XU, Bo;Hu, Chao;Hu, Hui;Chen, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4787-4807
    • /
    • 2016
  • Although the dense interconnection datacenter networks (DCNs) (e.g. FatTree) provide multiple paths and high bisection bandwidth for each server pair, the single-path TCP (SPT) and ECMP which are widely used currently neither achieve high bandwidth utilization nor have good load balancing. Due to only one available transmission path, SPT cannot make full use of all available bandwidth, while ECMP's random hashing results in many collisions. In this paper, we present OFPT, an OpenFlow based Parallel Transport framework, which integrates precise routing and scheduling for better load balancing and higher network throughput. By adopting OpenFlow based centralized control mechanism, OFPT computes the optimal path and bandwidth provision for each flow according to the global network view. To guarantee high throughput, OFPT dynamically schedules flows with Seamless Flow Migration Mechanism (SFMM), which can avoid packet loss in flow rerouting. Finally, we test OFPT on Mininet and implement it in a real testbed. The experimental results show that the average network throughput in OFPT is up to 97.5% of bisection bandwidth, which is higher than ECMP by 36%. Besides, OFPT decreases the average flow completion time (AFCT) and achieves better scalability.

A MECHANISM OF DEEP WELD PENETRATION IN GAS TUNGSTEN ARC WELDGING WITH ACTIVATING FLUX

  • Manabu Tanaka;Hidenori Terasaki;Masao Ushio;John J. Lowke;Yang, Chun-Li
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.76-81
    • /
    • 2002
  • The dramatic increase in the depth of a weld bead penetration has been demonstrated by welding a stainless steel in GTA (Gas-Tungsten-Arc) process with activating flux which consists of oxides and halides. However, there is no commonly agreed mechanism fer the effect of flux on the process. In order to make clear the mechanism, each behavior of the arc md the weld pool in GTA process with activating flux is observed in comparison with a conventional GTA process. A constricted anode root is shown in GTA process with the activating flux, whereas a diffuse anode root is shown in the conventional process. These anode roots are related strongly to metal vapor from the weld pool and the metal vapor is also related to temperature distributions on the weld pool surface. Furthermore, it is suggested that a balance between the Marangoni force and the drag force of the cathode jet should dominate the direction of re-circulatory flow in the weld pool. The electromagnetic force encourages the inward re-circulatory flow due to the constricted anode root in the case with flux. The difference in flow direction in the weld pool changes the geometry or depth/width ratio of weld bead penetration.

  • PDF

The Design of TC with WFQ for Effective Resource Sharing on Differentiated Service (Differentiated Service에서 공정한 자원 공유를 위한 WFQ 적용 TC 설계)

  • 장경성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.31-40
    • /
    • 2004
  • Diff-Serv(DS) is a mechanism by which network service providers can offer differing levels of network service to different traffic, in so providing quality of service(QoS) to their customers. Because this mechanism has been deployed just for fixed hosts with the Token Bucket mechanism according to AggF(Aggregate Flow) instead of each flow, DS can not suggest effective usability of traffic resources. In this paper, we use WFQ mechanism for traffic conditioner and scheduling method monitoring the AggF and the results will be used to control the next flows coming in TC. So it will control traffic rate dynamically and suggest efficient usability of bandwidth.

Application the mechanism-based strain gradient plasticity theory to model the hot deformation behavior of functionally graded steels

  • Salavati, Hadi;Alizadeh, Yoness;Berto, Filippo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.627-641
    • /
    • 2014
  • Functionally graded steels (FGSs) are a family of functionally graded materials (FGMs) consisting of ferrite (${\alpha}$), austenite (${\gamma}$), bainite (${\beta}$) and martensite (M) phases placed on each other in different configurations and produced via electroslag remelting (ESR). In this research, the flow stress of dual layer austenitic-martensitic functionally graded steels under hot deformation loading has been modeled considering the constitutive equations which describe the continuous effect of temperature and strain rate on the flow stress. The mechanism-based strain gradient plasticity theory is used here to determine the position of each layer considering the relationship between the hardness of the layer and the composite dislocation density profile. Then, the released energy of each layer under a specified loading condition (temperature and strain rate) is related to the dislocation density utilizing the mechanism-based strain gradient plasticity theory. The flow stress of the considered FGS is obtained by using the appropriate coefficients in the constitutive equations of each layer. Finally, the theoretical model is compared with the experimental results measured in the temperature range $1000-1200^{\circ}C$ and strain rate 0.01-1 s-1 and a sound agreement is found.

An active back-flow flap for a helicopter rotor blade

  • Opitz, Steffen;Kaufmann, Kurt;Gardner, Anthony
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.69-91
    • /
    • 2014
  • Numerical investigations are presented, which show that a back-flow flap can improve the dynamic stall characteristics of oscillating airfoils. The flap was able to weaken the stall vortex and therefore to reduce the peak in the pitching moment. This paper gives a brief insight into the method of function of a back-flow flap. Initial wind tunnel experiments were performed to define the structural requirements for a detailed experimental wind tunnel characterization. A structural integration concept and two different actuation mechanisms of a back-flow flap for a helicopter rotor blade are presented. First a piezoelectric actuation system was investigated, but the analytical model to estimate the performance showed that the displacement generated is too low to enable reliable operation. The seond actuation mechanism is based on magnetic forces to generate an impulse that initiates the opening of the flap. A concept based on two permanent magnets is further detailed and characterized, and this mechanism is shown to generate sufficient impulse for reliable operation in the wind tunnel.