• 제목/요약/키워드: Flow Maldistribution

검색결과 16건 처리시간 0.022초

바울형 미분기 베인휠에서의 유속 불균일 개선에 관한 연구 (Improvement of Maldistributed Air Velocity in the Vane Wheel of a Bowl Type Pulverizer)

  • 박덕배;허진혁;문승재
    • 플랜트 저널
    • /
    • 제6권2호
    • /
    • pp.62-69
    • /
    • 2010
  • The stability of coal pulverizer in the 800 MW coal-fired plants is vital to maintain their performance. Thus, this study analyzed the uneven abrasion of the deflector and coal spillage due to the air velocity maldistribution in the vane wheel of a bowl-type pulverizer as it is a possible cause for problems of facility using pulverized coal. In addition, air flow in the underbowl of a bowl-type pulverizer was studied to check air velocity maldistribution in the vane wheel using numerical method. In an attempt to correct the maldistribution of air velocity, air flow of the modified duct vane was studied as enlarging the length of the duct vanes installed at the air inlet duct of the pulverizer and increasing the angle of inclination. It was found that modified duct vane make the velocity distribution at the vane wheel uniform. formed by the duct vanes installed at the air inlet duct of the pulverizer and swirling flow is the major factor in making the velocity distribution of vane wheel exit uniform. This can prevent the uneven abrasion of the deflector, which is one of the components inside the pulverizer and coal spillage.

  • PDF

자동차용 촉매변환기의 최적설계를 위한 열 및 유동특성에 대한 수치적 연구 (Numerical Analysis of Thermal and Flow Characteristics for an Optimum Design of Automotive Catalytic Converter)

  • 정수진;김우승
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.841-855
    • /
    • 1999
  • In the present work, the effect of a flow maldistribution on the thermal and conversion response of 8 monolith catalytic converter is Investigated. To achieve this goal, a combined chemical reaction and multi-dimensional fluid dynamic mathematical model has been developed. The present results show that flow uniformity within the monolith brick has 8 great impact on light-off performance of the catalytic converter. In the case of lower flow uniformity, large portions of the monolith remain cold due to locally concentrated high velocities and CO, HC are unconverted during warm-up period, which loads to retardation of light-off. It has been also found that the heat-up pattern of the monolith ill similar to the flow distribution profile, In the early stage of the reaction. It may be concluded that flow maldistribution can cause a significant retardation of the light-off and hence can eventually worsen tho conversion efficiency of automotive catalytic converter.

냉매의 불균일한 분배가 증발기의 성능에 미치는 영향 (Effects on Refrigerant Maldistribution on the Performance of Evaporator)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.230-240
    • /
    • 2004
  • An experimental investigation was conducted to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R22. A comparison was made between the predictions by previously proposed tube-by-tube method and experimental data for the heat transfer rate of evaporator. Experiments were carried out under the conditions of saturation temperature of 5$^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of 27$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71㎧. Experiment show that air velocity increased by 85.2% is need for T-type distributor with four outlet branches than that of two outlet branches under the superheat of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 130% for T-type distributor with four outlet branches as compared to two outlet branches.

배기 매니폴드 확관부 형상 최적화에 관하여 (About the Shape Optimization of Ex-Manifold Diffuser)

  • 조석현
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1133-1138
    • /
    • 2004
  • Shape optimization method was coupled with a conventional CFD analysis to find the optimal shape of ex-manifold diffuser which decreases the maldistribution of flow above the catalyst. Shape optimization results show that flow uniformity above the catalyst was increased about 28% fur the axi-symmetric case and about 18% for the asymmetric case. The axi-symmetric type can be applied to the diffuser of under floor catalyst and the asymmetric type can be applied to the diffuser of close coupled catalyst.

배기계 형상에 따른 비정상 유동에서의 배기매니폴드와 촉매 입구 유동현상 해석 (Study on the Exhaust Flow Analysis of Unsteady Flow with Various Exhaust Manifolds and Catalyst Geometries)

  • 이재호;김대우;곽호철;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.217-222
    • /
    • 2004
  • In recent year, as the current and future emission regulations go stringent, the research of exhaust manifold and CCC has become the subject of increasing interest and attention. This study is concerned with the systematic approach to improve catalyst flow uniformity and light-off behavior through the basic understanding of exhaust flow characteristics. Computational approach to the unsteady compressible flow for exhaust manifold of 4-1 type and 4-2-1 type and CCC system of a 4-cylinder DOHC gasoline engine was performed to investigate the flow distribution of exhaust gases. In this study, through calculation, the effects of geometric configuration of exhaust manifold on flow structure and its maldistribution in monolith were mainly investigated to understand the exhaust flow patterns in terms of flow uniformity. Based on the design guidance resulting from this fundamental study, the flow uniformity of 4-2-1 type exhaust manifold demonstrated the more improved exhaust characteristics than that of the 4-1 type one.

  • PDF

태양열 온수시스템 배관 최적설계 (Optimized Design of Piping Array in Solar Hot Water System)

  • 신정철
    • 에너지공학
    • /
    • 제22권3호
    • /
    • pp.302-306
    • /
    • 2013
  • A simple method for balancing flow rates in arrays of parallel connected flat plate solar collectors has been developed. The method is based on a computer program which solves for the flow rate through each of the collectors in a reverse return plumbed array. The analysis uses conventional "K-value" techniques and assumes the effects of density variations within the system to to be negligible. It has been found that by appropriately sizing the inlet and outlet manifolds, flow maldistribution can be nearly eliminated without resorting to expensive or complicated balancing techniques.

6기통 가솔린 엔진에 장착된 촉매변환기 내의 3차원 비정상 유동특성 해석 (Three Dimensional Unsteady Flow Characteristics inside the Catalytic Converter of 6 Cylinder Gasoline Engine)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.108-120
    • /
    • 1998
  • A theoretical study of three-dimensional unsteady compressible non-reacting flow inside double flow of monolith catalytic converter system attached to 6-cylinder engine was performed for the achievement of performance improvement, reduction of light-off time, and longer service life by improving the flow distribution of pulsating exhaust gases. The differences between unsteady and steady-state flow were evaluated through the numerical computations. To obtains the boundary conditions to a numerical analysis, one dimensional non-steady gas dynamic calculation was also performed by using the method of characteristics in intake and exhaust system. Studies indicate that unsteady representation is necessary because pulsation of gas velocity may affect gas flow uniformity within the monolith. The simulation results also show that the level of flow maldistribution in the monolith heavily depends on curvature and angles of separation streamline of mixing pipe that homogenizes the exhaust gas from individual cylinders. It is also found that on dual flow converter systems, there is severe interactions of each pulsating exhaust gas flow and the length of mixing pipe and junction geometry influence greatly on the degree of flow distribution.

  • PDF

분할형 전기히터가 장착된 디젤 매연 필터 내의 온도분포에 관한 연구 (Study on Temperature Distributions in a Diesel Particulate Filter Equipped with Partitioned Electric Heaters)

  • 박성천;이충훈;이수룡
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.67-73
    • /
    • 2010
  • The temperature distribution of diesel particulate filter with five partitioned electric heaters is numerically analyzed to investigate the condition of regenerating ceramic filter. The commercial code STAR-$CCM+^{(R)}$ is utilized to simulate multi-dimensional steady hot air flow in DPF. In order to verify the computational results, thermocouples are used to measure the temperature distribution in DPF. Computational results agree well with experimental ones. The results show that the maximum temperature in DPF is lowered as the mass flow rate of exhaust gas increases, which means that the more power in heater will be necessary as the engine speed increases. Compared with heater placed at center, heater at circumference has the higher maximum temperature in DPF. The maldistribution of flow field in front of heater has the main influence on the temperature distribution in DPF.

대향류 매니폴드 입-출구 면적비에 따른 열교환기의 성능특성에 관한 수치적 연구 (Numerical Investigation of the Performance of a Heat Exchanger for the Inlet-outlet Area Ratio of Counter Flow Manifold)

  • 김상조;최병익;김귀순;손창민;하만영;정지환;고정상
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.269-273
    • /
    • 2011
  • 본 논문에서는 대향류 매니폴드의 면적비에 따른 튜브형 열교환기에서의 압력강하와 유량 균일도를 분석하기위해 전산해석을 수행하였다. 유동 분배와 압력손실 특성은 입-출구 면적비에 따라 영향을 받는다. 본 연구에서, 최적의 입-출구 면적비를 선택함으로서 튜브형 열교환기의 유동 불균일도 최소와 향상된 압력손실 특성을 얻을 수 있었다.

  • PDF

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF