• Title/Summary/Keyword: Flow Interference

Search Result 325, Processing Time 0.024 seconds

A Study on the Efficient Program Integration using Data Flow Analysis Method (자료 흐름 분석 기법을 이용한 효율적인 프로그램 통합에 관한 연구)

  • Park, Soon-Hyung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.337-340
    • /
    • 2008
  • To take the re-use of software, we need to study the efficient integration method of source programs. When the source programs are merged, it is required the steps of verification for any non-interference on non-identical parts of them. The traditional techniques of the program integration verify non-interference of source programs through the simple comparison of statements of source programs. We propose the efficient integration method using data flow analysis in the programs. A study comparing test results from the traditional method and the proposed method has found that the proposed method is more efficient than the traditional method.

  • PDF

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.

Numerical Investigation of The Effect of External Stores on Tail Wing Surfaces of a Generic Fighter Aircraft (전투기 형상의 외부장착물이 꼬리날개에 미치는 영향에 대한 수치적 연구)

  • Kim, Min-Jae;Kwon, Oh-Joon;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.211-219
    • /
    • 2008
  • A three-dimensional inviscid flow solver has been developed based on unstructured meshes for the investigation of the effect of the external stores on the tail surfaces of a generic fighter aircraft. The numerical method is based on a vertex-centered finite-volume discretization and an implicit point Gauss-Seidel time integration. The calculations were made for a steady flow and the computed results were compared with experimental data to validate the flow solver. An unsteady time-accurate computation of the generic fighter aircraft with external stores at transonic flight conditions showed that the external stores cause unsteady loading on the horizontal tail surface due to the mutual interference between their wake and the horizontal tail surface. It was shown that downward deflection of the trailing edge flap significantly reduces the undesirable interference effect.

Numerical Investigation of Jet Interaction for Missile with Continuous Type Side Jet Thruster

  • Kang, Kyoung Tai;Lee, Eunseok;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • A continuous type side jet controller which has four nozzles with thrust control devices was considered. It is deployed to a missile for high maneuverability and fast controllability in the terminal guidance phase. However, it causes more complex aerodynamic jet interactions between the side jet and the supersonic free stream than does the conventional impulse type side jet with a small single thruster. In this paper, a numerical investigation of the jet interference effects for the missile equipped with a continuous type side jet thruster is presented. A three-dimensional flow field was simulated by using a commercial unstructured-based CFD solver. The numerical simulation method was validated through comparison with wind tunnel test results for the single jet. The method of defining jet direction for this type of side jet control to minimize simulation cases was also introduced. Flow fields investigation and jet interaction effects for various flow conditions, jet pressure ratios and defined jet direction conditions were performed. From the numerical simulation for the continuous type side jet, extensive aerodynamic interference data were obtained to construct an aerodynamic coefficients database for precise missile control.

Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control (제어관점에서의 부하감지형 유압시스템의 특성)

  • 김성동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.

A wing-tail interference for a tail-controlled missile (꼬리날개 조종 유도무기의 주날개-꼬리날개 간섭 현상)

  • Kim, Duk-Hyun;Lee, Dae-Yeon;Kang, Dong-gi;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.817-824
    • /
    • 2017
  • This paper presents the characteristics of wing-tail interference for a tail-controlled missile. The magnitude of wing-tail interference was calculated with wind tunnel test results and its effects on aerodynamic coefficients were investigated. The downwash angle of tail wing was calculated with experimental data and the effect of wing-tail interference was expressed as a ratio of angle of attack. Numerical simulations were made to examine flow characteristics of wing-tail interference and the vorticity contour of missile were compared with respect to angle of attack. Experimental and numerical analysis results show that the wing-tail interference has significant effects on static stability of tail-controlled missile.

Non-ideal filter interference calculation algorithm (Non-ideal 필터에 수신된 간섭전력 계산 방법)

  • Kim, Young-Hwan;Eo, Pil-Seon;Yang, Hoon-Gee;Shin, Hyun-Chol;Yang, Sung-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.2 s.10
    • /
    • pp.11-18
    • /
    • 2006
  • In this paper, we present the algorithm for calculating the interference of the received Non-ideal receiver filter and present the method for calculating the interference faster than that of the conventional method. The algorithm is simulated by Matlab and the simulation procedure is described by the flow-chart. The algorithm is verified by comparing the simulated results by Matlab with the result by calculator.

  • PDF

Removal of OH Spectral Interferences from Aqueous Solvents in Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) with Ar Cryogenic Desolvation

  • Cho, Young-Min;Pak, Yong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1415-1420
    • /
    • 2005
  • The spectral interferences of OH from aqueous solvents in ICP-AES have been studied and eliminated using a cryogenic argon trap. The prominent lines of Bi I 306.772 nm, Al I 309.271 nm, and V II 310.230 nm, which are very seriously overlapped with the OH band, were examined. With an extended torch and high tangential flow of 20 L/min, water vapor from air entrainment was prevented. The combination of a condenser and argon cryogenic trap was able to eliminated most of water vapor carried by the argon sample gas. Removal of OH spectral interference could extend the linearity of the calibration curve 5-10 times on the lower concentration for ICP-AES. Interference Equivalent Concentration (IEC) has been reduced to 5.6, 5.9, and 12.4 times for Bi, Al and V, respectively.