• Title/Summary/Keyword: Flow Forming

Search Result 657, Processing Time 0.022 seconds

Vibration Power Flow Analysis of Ship Structures Using SEA Parameter(Coupling Loss Factor) (SEA 파라미터(연성손실계수)를 이용한 선박의 진동 파워흐름해석)

  • Park, Young-Ho;Hong, Suk-Yoon;Park, Do-Hyun;Seo, Seong-Hoon;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.291-300
    • /
    • 2000
  • This paper proposes the new hybrid analysis of vibration in the medium to high frequency ranges including PFA and SEA concept. The core part of this method is the applications of coupling loss factor(CLF) instead of power transmission, reflection coefficients in boundary condition. This method shows very promising compared to the classical PFA for the various damping loss factors and wide ranges of frequencies. Besides this paper presents the applicable method in Power Flow Finite Element Method by forming the joint element matrix with CLF. These hybrid concepts are expected to improve SEA and PFA methods in vibration analysis.

  • PDF

Structural Safety Evaluation by Analysis of Pressure Variation Characteristics of Small Hydro Power Hydraulic Turbine Blades in Sewage Treatment Plant (하수처리장 소수력 수차 블레이드의 압력변화 특성 분석을 통한 구조안전성 평가)

  • Park, Yoo-Sin;Kim, Ki-Jung;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.126-131
    • /
    • 2017
  • Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.

The effect of Reynolds number on the elliptical cylinder wake

  • Shi, Xiaoyu;Alam, Md. Mahbub;Bai, Honglei;Wang, Hanfeng
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.525-532
    • /
    • 2020
  • This work numerically investigates the effects of Reynolds number ReD (= 100 - 150), cross-sectional aspect ratio AR = ( 0.25 -1.0), and attack angle α (= 0° - 90°) on the forces, Strouhal number, and wake of an elliptical cylinder, where ReD is based on the freestream velocity and cylinder cross-section height normal to the freestream flow, AR is the ratio of the minor axis to the major axis of the elliptical cylinder, and α is the angle between the cylinder major axis and the incoming flow. At ReD = 100, two distinct wake structures are identified, namely 'Steady wake' (pattern I) and 'Karman wake followed by a steady wake (pattern II)' when AR and α are varied in the ranges specified. When ReD is increased to 150, an additional wake pattern, 'Karman wake followed by secondary wake (pattern III)' materializes. Pattern I is characterized by two steady bubbles forming behind the cylinder. Pattern II features Karman vortex street immediately behind the cylinder, with the vortex street transmuting to two steady shear layers downstream. Inflection angle αi = 32°, 37.5° and 45° are identified for AR = 0.25, 0.5 and 0.75, respectively, where the wake asymmetry is the greatest. The αi effectively distinguishes the dependence on α and AR of force and vortex shedding frequency at either ReD. In Pattern III, the Karman street forming behind the cylinder is modified to a secondary vortex street. At a given AR and α, ReD = 150 renders higher fluctuating lift and Strouhal number than ReD = 100.

Biodegradation of Diesel Oil by Microorganisms Isolated from Petroleum Contaminated Site (유류 오염지역으로부터 분리된 균주를 이용만 디젤유의 분해)

  • 박천보;허병기;윤현식
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.632-637
    • /
    • 2001
  • The cells obtained from diesel contaminated site were tested for diesel degradation by culturing them on the culture medium that contained diesel as the only carbon source. Two strains that grew well in the culture media were separated: one formed white colony and another strain formed yellow colony. When they were cultured together, much higher diesel degradation was obtained compares to that of individual cell culture. Mixed culture of white and yellow colony forming strains grew well with 1%(v/v) diesel and the addition of growth nutrients increased the diesel degradation. Additional nitrogen source was efficient for higher diesel degradation (over 90%) when it was compared with that without nitrogen source. When mixed culture of white and yellow colony forming cells were applied to the soil column system contaminated by diesel, 30 mL/min of air flow rate was found to be sufficient to degrade diesel oil. The diesel degradation did not increase noticeably at higher flow rate. The addition of nitrogen source resulted in the increase in diesel degradability.

  • PDF

Effects of Korean Traditional Medicine on Murine Hematopiesis (Regulation of Hematopoietic Cytokine & $CD34^{+}$ cell Expression) (수 종의 한약제제가 조혈작용에 미치는 영향)

  • 전재현;김영철;이장훈;우흥정
    • The Journal of Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.156-168
    • /
    • 2001
  • Objectives : To evaluate the diverse actions of stimulation on the hematopoietic system, 4 formulas (KH I, KH 2, KH 3, KH 4) were studied. Method and Result : RT-PCR was performed to measure the gene expression of hematopoietic cytokines (TPO, GM-CSF, SCF, IL-3). When bone marrow cells were treated with KH 1, 2, 3, 4, the gene expressions of TPO, SCF, IL-3, and GM-CSF were increased. Flow cytometric analysis was performed to measure the expression of CD34+ cell activity. After 72 hrs culture supplemented with KH 1, 2, 3, 4, the percent of CD34+ cell of KH 2, 3, 4 were increased. To measure the expression of colony forming units - granulocyte erythrocytes, macrophages, megakaryocytes (CFU-GEMM) and burst forming unit-erythroid (BFU-E), semisolid clonogenic assay was performed. After 14 days of culture the number of CFU-GEMM and BFU-E of KH I, 2, 3, 4 were significantly increased compared to those of EPO groups (KH 1 P<0.0l, KH 2 P<0.05, KH 3 P<0.001, KH 4 P<0.0l). To determine the intracelluar TPO expression by KH 3, KH 4 in bone marrow cells, intracelluar staining and flow cytometric analysis were performed. After 24 hrs cultures, the TPO expression of the KH 3 and KH 4 treated groups were increased over those of the controlled groups (control : 50%, KH 3 : 87%, KH 4 : 78%). Conclusion : These results suggest that KH I, KH 2, KH 3, KH 4 have hematopoietic effects through increasing the production of hematopoietic cytokines and stimulating the activity of $CD34^{+}$ cells. This study also shows that KH 3 has a more effective hematopoietic effect than KH 1, 2, 4. These results suggest that the formulas (KH I, 2, 3, 4) can be applied to the patients with inappropriate hematopoietic system, and that KH 3 can be the most effective formula among these 4 in treating bone marrow disease in clinics.

  • PDF

Photodynamic Inactivation of Moraxella catarrhalis (Moraxella catarrhalis의 광역학적 비활성화)

  • Hong, Seong-No;Kwon, Pil-Seung;Kim, Dae-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • The aim of this study was to evaluate the bacterial effects of Moraxella catarrhalis in otitis media with effusion (OME) by photodynamic therapy (PDT). Bacterial suspensions (10000 CFU/mL) were prepared. The colony forming units (CFU) of Moraxella catarrhalis have been measured after an application of photogem plus 632 nm diode laser irradiation. One ml of the bacterial suspensions have been incubated in the dark for 3h with various concentrations of photogem ($0.625{\sim}5.0_{\mu}g/mL$) and then irradiated with 632 nm diode laser ($15J/cm^2$). After, the PDT Moraxella catarrhalis suspensions ($50{\mu}L$) were inoculated on chocolate agar plate and cultured in the dark at $37^{\circ}C$, 5% $CO_2$ condition for 18h. The colony forming units off the bacteria were measured. Also transmission electron microscopy (TEM) was employed to evaluate the effect of otitis media pathogens by PDT. The nucleus of Moraxella catarrhalis was stained using green fluorescent nucleic acid dye thiazole orange and the fluorescence intensity of the nucleus was measured by flow cytometry. The PDT was effective in killing Moraxella catarrhalis at the photogem dose of $5.0_{\mu}g/mL$, respectively, As assessed by flow cytometry analysis the fluorescence intensity of the nucleus got lower after PDT. TEM result appeared to able to cause damage to the bacterial membranes. On the basis of these findings, bacterial photodynamic therapy with photogem can be considered to be a promising new therapeutic approach for OME.

  • PDF

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

Effect of Fines Distribution on Press Dewatering and Physical Properties of Multi-ply Sheet

  • Lee, Hak-Lae;Youn, Hye-Jung;Kang, Tae-Young;Choi, Ik-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.36-41
    • /
    • 2008
  • Multi-ply sheet forming has many advantages including the possibility of using wide range of materials in a given structure, lowering production cost, making higher grammage products and so on. But, incorrect structure of sheet makes flow resistance higher so that it shows poor dewatering in press section. One of major factors that affect sheet structure and dewatering property is fines content in each layer. We, therefore, examined the press dewatering of multi-ply sheet that has the different fines content in each layer and the effect of fines distribution on physical properties of sheet to find a technology for optimum utilization of raw materials. In case of two layered sheet, the sheet which was composed of layers with the different flow resistance showed higher dewatering rate than one which has the same flow resistance. And the more difference in fines content for layers existed, the more dewatering occurred. For three layered sheets, dewatering is mainly dependent on fines content of bottom layer. Strength properties were affected by dewatering degree and multi-ply sheet structure.

Suppressing Effect of Hydrogen Evolution by Oxygen Functional Groups on CNT/ Graphite Felt Electrode for Vanadium Redox Flow Battery (탄소나노튜브/흑연펠트 전극의 산소작용기를 활용한 바나듐 레독스 흐름 전지의 수소발생 억제 효과)

  • Kim, Minseong;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.4
    • /
    • pp.164-170
    • /
    • 2021
  • Vanadium redox flow batteries (VRFB) have emerged as large-scale energy storage systems (ESS) due to their advantages such as low cross-contamination, long life, and flexible design. However, Hydrogen evolution reaction (HER) in the negative half-cell causes a harmful influence on the performance of the VRFB by consuming current. Moreover, HER hinders V2+/V3+ redox reaction between electrode and electrolyte by forming a bubble. To address the HER problem, carbon nanotube/graphite felt electrode (CNT/GF) with oxygen functional groups was synthesized through the hydrothermal method in the H2SO4 + HNO3 (3:1) mixed acid solution. These oxygen functional groups on the CNT/GF succeed in suppressing the HER and improving charge transfer for V2+/V3+ redox reaction. As a result, the oxygen functional group applied electrode exhibited a low overpotential of 0.395 V for V2+/V3+ redox reaction. Hence, this work could offer a new strategy to design and synthesize effective electrodes for HER suppression and improving the energy density of VRFB.

Numerical investigation of the influence of structures in bogie area on the wake of a high-speed train

  • Wang, Dongwei;Chen, Chunjun;He, Zhiying
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.451-467
    • /
    • 2022
  • The flow around a high-speed train with three underbody structures in the bogie area is numerically investigated using the improved delayed detached eddy simulation method. The vortex structure, pressure distribution, flow field structure, and unsteady velocity of the wake are analyzed by vortex identification criteria Q, frequency spectral analysis, empirical mode decomposition (EMD), and Hilbert spectral analysis. The results show that the structures of the bogie and its installation cabin reduce the momentum of fluid near the tail car, thus it is easy to induce flow separation and make the fluid no longer adhere to the side surface of the train, then forming vortices. Under the action of the vortices on the side of the tail car, the wake vortices have a trend of spanwise motion. But the deflector structure can prevent the separation on the side of the tail car. Besides, the bogie fairings do not affect the formation process and mechanism of the wake vortices, but the fairings prevent the low-speed fluid in the bogie installation cabin from flowing to the side of the train and reduce the number of the vortices in the wake region.