• Title/Summary/Keyword: Flow Forming

검색결과 657건 처리시간 0.031초

자동차 부품의 정밀 압출 단조 (Net Shape Flow Press of Automobile Parts)

  • 강대건
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.13-22
    • /
    • 1996
  • The quality requirements for metal forming products have become more strict. Machined parts, which could be produced only by cutting, can now be formed plastically. In order to reach the mechanical strength and geometrical accuracy, reasonable production technologies should be developed. In this presentation, some basic flow-press-technologies in the metal forming are introduced. Some real sample parts for a passenger can are shown and their forming plans are explained. Also problems and solutions for the production of bevel gears are discussed.

업셋 단조의 좌굴 및 소성 불안정 유동에 관한 연구 (A Study on the Buckling and Plastic Instable Flow in Upset Forging)

  • 김완수;이병섭;황두순;홍성인
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.393-398
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process, I. e. upsetting, backward extrusion, piercing, indentation. And also, it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfections in the lubrication, billet eccentricity, inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and for better control of forming operation, we should necessarily find out their phenomena. In this study, we introduced the friction disturbance due to inclined punch angle. Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity. Also, we considered the buckling parameters of billet with the large aspect ratio in upset forging.

  • PDF

Two-Phase Flow를 이용한 A356 합금의 충전거동 해석 (Analysis of A356 alloys filling behavior considering Two-Phase flow)

  • 설동언;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.425-428
    • /
    • 2006
  • A semi-solid forming technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forging. In this study, the numerical analysis of semi-solid filling has been studied with solid fraction fs = 30% of A356 aluminum alloys. The finite difference program of two-phase flow model of Navier Stokes' equation coupled with heat transfer and solidification has been developed to predict a filling pattern, liquid segregation and temperature distribution of semi-solid metals. It gives die filling patterns and final solidification area. It can predict mechanical properties of semi-solid forming processes.

  • PDF

이동 경화를 고려한 좌굴 및 소성 불안정 유동에 관한 연구 (A Study on Buckling and plastic Instable Flow with Kinematic Hardening)

  • 황두순
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.98-101
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. And also it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfection in the lubrication billet eccentricity inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and it is for better control of forming operation we should necessarily find out their phenomena. In this study we used the friction disturbance due to inclined punch angle and introduced the method considering kinematic hardening effect Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity.

  • PDF

건식초지기술의 가능성 평가를 위한 건식초지기 개발 (Development of Dry Forming Mold for the Feasibility Study of Dry Forming of Paper)

  • 김종민;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제39권2호
    • /
    • pp.1-8
    • /
    • 2007
  • To examine the feasibility of dry forming technology for papermaking, a dry forming mold (DFM) was developed and evaluated. Main fanning section of DFM was a cylindrical tube, and at the top of the mold a stirring equipment was placed to disperse dry fibers. These fibers were screened using a hole type screen plate placed just under the stirring equipment and dropped freely on the fanning wire located 0.9 m below of the screen plate to form a dry fiber pad. The vertical and horizontal velocity of air flow in the forming cylinder were evaluated and analyzed to find the most effective method of air flow control in the cylinder. Humidification and pressing conditions to obtain a decent dry fanned papers were examined. Results showed dry fanned papers can be prepared with this dry forming mold. And this mold can be used to examine the effect of the papermaking process factors including pressing pressure, drying temperature, humidification on sheet quality of dry formed papers.

Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구 (A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts)

  • 윤덕재;함승연;이용신
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

박강판의 온도변화에 따른 인장특성 (The Tensile Characteristics of Steel Sheets at Various Temperature Conditions)

  • 이항수;오영근
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.101-110
    • /
    • 2001
  • The thermal problem of press work is classified into two cases. First, the temperature of forming die passively rises due to the heating effect of plastic deformation. The warm forming is the second case in which the external heating is applied to the die and blank holder. So, the purpose of this study is to provide database for the forming characteristics at various temperature conditions. In this study, the tensile test was carried out for the commercial steel sheets such as SCPI and SCP3C with the thickness of 0.7mm and 1.4mm respectively. The tensile strength, total elongation, Lankford value and the flow curve have been obtained at the temperature of $25^{\circ}C$, $50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. From the results, we can see that both the tensile strength and total elongation decrease as the temperature increases. In the light of anisotropy, the effect of thickness is dominant than the material specs. For the temperature dependency of flow curves, there are only small differences for the work-hardening exponent, and the strength intensity decreases monotonically as temperature increases. The present results we useful as input data for the analysis of sheet metal forming processes with the various temperature conditions.

  • PDF

과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발 (Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region)

  • 옥명렬;서진유;홍경태
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.

탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론 (Nonsteady Plane-strain Ideal Forming with Elastic Dead Zone)

  • 이원오;정관수;;강태진
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.540-545
    • /
    • 2004
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.