• Title/Summary/Keyword: Flow Exit

Search Result 988, Processing Time 0.032 seconds

Venture Capital and Its Impact on an Early IPO in the Venture-Backed Companies (벤처캐피탈의 투자가 투자기업 조기 IPO에 미치는 영향)

  • Lee, Hee-Woo;Jung, Hee-Seog
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.19-29
    • /
    • 2012
  • We made a regression analysis on the early IPO of venture capital investments in Korean IPO market. First, we found that it was likely to shorten the period to IPO in companies which were fast growing with a good operating cash flow, but these companies had a higher possibility of the earning management. Second, companies with more assets and larger size of the board of directors did not take companies public any earlier. Third, a better corporate governance also had no impact on the time period to IPO in the newly public firms. The findings above clearly show that venture-backed companies in Korea pursue the tendency of an early IPO. This phenomenon was much clearer when the companies were invested in by multiple venture capital firms than by a single investor. In general, venture capital firms invest in companies which are fast growing and which have a good operating cash flow. On the other side, venture capitals make investee companies go public earlier by manipulating operating earnings, so that they themselves may exit early. In conclusion, this research has shown that venture capitals in Korea do not play a positive role in the corporate transparency. This is the paradox of venture capital investment and this also shows the current status of Korean venture capital firms.

Observation of Ignition Characteristics of Coals with Different Moisture Content in Laminar Flow Reactor (층류 반응기를 이용한 수분함량에 따른 석탄 휘발분의 점화 특성에 관한 연구)

  • Kim, Jae-Dong;Jung, Sung-Jae;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • The main objective of this study is to investigate the variation in the ignition characteristics of coals as a function of moisture content in a laminar flow reactor (LFR) equipped with a fuel moisture micro-supplier designed by the Pusan Clean Coal Center. The volatile ignition position and time were observed experimentally when a pulverized coal with moisture was fed into the LFR under burning conditions similar to those at the exit of the pulverizer and real boiler. The reaction-zone temperature along the centerline of the reactor was measured with a $70-{\mu}m$, R-type thermocouple. For different moisture contents, the volatile ignition position was determined based on an average of 15 to 20 images captured by a CCD camera using a proprietary image-processing technique. The reaction zone decreased proportionally as a function of the moisture content. As the moisture content increased, the volatile ignition positions were 2.92, 3.36, 3.96, and 4.65 mm corresponding to ignition times of 1.46, 1.68, 2.00, and 2.33 ms, respectively. These results indicate that the ignition position and time increased exponentially. We also calculated the ignition-delay time derived from the adiabatic thermal explosion. It showed a trend that was similar to that of the experimental data.

Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4 MW (0.4 MW 급 분절형 아크 히터를 이용한 초음속 플라즈마 풍동 특성 실험)

  • Kim, Min-Ho;Lee, Mi-Yeon;Kim, Jeong-Soo;Choi, Chea-Hong;Seo, Jun-Ho;Moon, Se-Yeon;Hong, Bong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.700-707
    • /
    • 2013
  • Experimental analyses on a supersonic plasma wind tunnel of CBNU (Chonbuk National University) were carried out. In these experiments, a segmented arc heater was employed as a plasma source and operated at the gas flow rates of 16.3 g/s and the total currents of 300 A. The input power reached ~350 kW with the torch efficiency of 51.4 %, which is defined as the ratio of total exit enthalpy to the input power. The pressure of plasma gas in the arc heater was measured up to 4 bar while it was down to ~45 mbar in a vacuum chamber through a Laval nozzle. During this conversion process, the generated supersonic plasma was expected to have a total enthalpy of ~11 MJ/kg from the measured input power and torch efficiency. In addition to the measurement of total enthalpy, a cone type probe was inserted into the supersonic plasma flow in order to estimate the angle between shock layer and surface of the probe. From these measurements, the temperature and the Mach number of the supersonic plasma were predicted as ~2,950 K and ~3.7, respectively.

A Nuclide Transfer Model for Barriers of the Seabed Repository Using Response Function (응답함수를 이용한 해저처분장의 방벽에 대한 핵종전달 모델)

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hahn, Pil-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • A nuclide transfer by utilizing mass transfer coefficient and barrier response function defined for each barrier is proposed, by which the final nuclide transfer rate into the sea water can be evaluated. When simple and immediate quantification of the nuclide release is necessary in the conservative aspect, using this kind of approach may be advantageous since each layered barrier can be treated separately from other media in series in the repository system, making it possible to apply separate solutions in succession to other various media. Although one disadvantage is that while flux continuity can be maintained at the interface by using the exit nuclide flux from the first medium as the source flux for the next one, there may be no guarantee for concentration continuity, this problem could be eliminated assuming that there is no boundary resistance to mass transfer across the interface. Mass transfer coefficient can be determined by the assumption that the nuclide concentration gradient at the interface between adjacent barriers remains constant and barrier response function is obtained from an analytical expression for nuclide flow rate out of each barrier in response to a unit impulse into the barrier multiplied by mass transfer coefficient. Total time-dependent nuclide transfer rate from the barrier can then be obtained by convoluting the response function for the barrier with a previously calculated set of time-varying input of nuclide flow rate for the previous barrier.

  • PDF

Fish Fauna Using Fishway on Six River in Korea (국내 6개 하천에서 어도를 이용하는 어류상)

  • Kim, Dong-Oug;Park, Je-Chul;Hwang, Jeong-Seo;Kim, Dong-Sup;Lee, Wan-Ok;Hwang, Gilson
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.3
    • /
    • pp.255-264
    • /
    • 2020
  • The use of fishway has been investigated up to 2~9 years, continuously each month and over the long term that installed in 6 domestic rivers. The fish's use of fishway has been investigated as direct collection by trap in exit section of the fishway. The population structure of fish using 6 fishway and the fish that live in the river showed difference. About 2 to 7 species of fish took possession of more than 80% of total use of fish in fishways. This seems to be not the results of attraction flow in fishway but specialized result of physiology characteristic followed by species of fish. In addition, the distribution of fish species using fishway was different with the fishways installed in river. This difference seems to be consequence of the place that of the river and fishway types. Generally, the fish species were less and had high ratio of home migratory fish in vertical slot type fishway, which shows relatively fast velocity of water flow. This analysis result of major fish species using fishway can be used in planning fishway and to choose major targeted species for the planning.

Determination of Minimum Spacing between Off-ramp Terminus and Intersection Considering the Influence of Adjacent Signalized Intersections (신호교차로 영향에 따른 도시고속도로 유출연결로 최소이격거리에 관한 연구)

  • Kim, Sang-Gu;Sim, Dae-Yeong;Heo, Du-Wan
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.79-87
    • /
    • 2007
  • The interchanges of urban freeways have many problems with traffic operation due to high off-ramp flows and frequent congestion at adjacent intersections. The flow exiting from off-ramps is affected by the operational status and traffic volume conditions of the nearest signalized intersection. As a result, off-ramp flow cannot exit and the queue backs up the freeway mainline when queues from the signalized intersection form up to the junction of the off-ramp and street. The spacing between an off-ramp and an adjacent intersection is likely to determine the traffic conditions at the adjacent intersection. However, the current design guidelines do not consider such a factor. This study is to develop a model calculating the spacing between off-ramps and adjacent intersections considering the signal, traffic, and road conditions. The variables affecting the model in this study are effective green time (g/C), volume-capacity ratio (v/c), the number of lanes, and off-ramp volume. Various scenarios are designed to represent the effects of the variables and the road networks are constructed using VISSIM, which is a common traffic micro-simulation software package. The queue length is derived from VISSIM and this length is considered as the recommended spacing between the off-ramp and the adjacent intersection. Through the simulation analysis, regression models are developed to calculate the queue length reflecting the various conditions such as signals, traffic, and road configurations. The developed model can be used to create road design guidelines to determine the location of off-ramps in the planning stage.

A Study on the Impacts of Truck Platooning on Freeway Traffic-Flow and the Effect of Dedicated Lane (고속도로 화물차의 군집주행이 교통류에 미치는 영향 및 전용차로 효과 연구)

  • KIM, Joohye;Lee, YoungIhn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.52-69
    • /
    • 2020
  • Considering the need for an infrastructure-level review, this study analyzed the impact of truck platooning on freeway traffic flow and the effect of dedicated lanes based on domestic road and traffic conditions. According to the study, the higher traffic volume and truck ratio, the higher ratio of platoons and the greater size of platoons are formed, which results in greater effect of increasing the average speed of the network. Therefore, the routes with heavy traffic and heavy cargo traffic could be positively considered for truck platooning. However, the analysis showed that the effect of increasing the average speed of the entire network is difficult to expect in the event of a queue due to entry and exit, and that the overall network's throughput could be reduced. Therefore, traffic operation strategies associated with the access road, such as securing capacity of the connection, are needed to maximize the effect of truck platooning. When it comes to the effect of dedicated lane, it could have a positive effect only if one lane was fully operated by automated trucks under the condition of 100% MPR, which allowed positive effects in all aspects, such as higher average speed, throughput, and reduced conflict rates.

Growth Suppression by Adenovirus-mediated Gene Transfer of p16/INK4a in Glioma Cell Lines (사람의 신경교종 세포주에서 아데노바이러스 벡터를 이용한 p16/INK4a 유전자 전달에 의한 종양성장 억제)

  • Kim, Mi-Suk;Kwon, Hee-Chung;Kang, Hee-Seog;Park, In-Chul;Rhee, Chang-Hun;Kim, Chang-Min;Lee, Choon-Taek;Hong, Seok-Il;Lee, Seung-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.4
    • /
    • pp.471-476
    • /
    • 2000
  • Objective : p16/INK4a, a kind of tumor suppressor genes, encodes a specific inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. This prevents the association of CDK4 with cyclin D1, and subsequently inhibits phosphorylation of retinoblastoma tumor suppressor protein(pRb), thus preventing exit from the G1 phase. According to previous reports, over 50% of glioma tissue and 80% of glioma cell lines have been demonstrated inactivation of p16/INK4a gene. The purpose of this study was to determine whether recombinant adenovirus-p16 virus is a suitable candidate for gene replacement therapy in cases of glioma. Methods : Three human glioma cell lines(U251MG, U87MG and U373MG) that express mutant p16 protein were used. Replication-deficient adenovirus was utilized as an expression vector to transfer exogenous p16 cDNA into the cells ; control cells were infected with the Ad-${\beta}$-gal expressing ${\beta}$-galactosidase. To monitor gene transfer and the expression of exogenous genes, we used Western Blotting analysis. Flow cytometry studies of cellular DNA content were performed to determine the cell cycle phenotype of the glioma cells before and after treatment. Results : We showed here that restoration of p16/INK4a expression in p16 negative U87MG, U251MG and partially deleted U373MG by Ad-CMV-p16 induced growth suppression in vitro. Flow cytometric study revealed that Ad-CMV-p16 infected U87MG cells were arrested during the G0-G1 phase of the cell cycle. Expression of p16 transferred by Ad-CMV-p16 in glioma cells was highly efficient and maintained for more than seven days. Conclusions : Our results suggest that Ad-CMV-p16 gene therapy strategy is potentially useful and warrants further clinical investigation for the treatment of gliomas.

  • PDF

A Study on Optimal Parameter Selection for Health Monitoring of Turboprop Engine (PT6A-62) (터보프롭엔진(PT6A-62)의 성능저하 진단을 위한 최적 계측 변수 선정에 관한 연구)

  • 공창덕;기자영;장현수;오성환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.87-97
    • /
    • 2000
  • A steady state performance simulation and diagnostics program for the turboprop engine (PT6A-62), which is the power plant of the first developed military basic trainer KT-1 in Republic of Korea, was developed. The developed steady state performance analysis program was evaluated with the performance data provided by the engine manufacturer and with analysis results of GASTURB program, which is well known for the performance simulation of gas turbines. Performance parameters were discussed to evaluate validity of the developed program at various cases such as altitude, flight velocity and part load variation. GPA(Gas Pass Analysis) allows engine performance deterioration to be identified at the module level in terms of reduction in component efficiencies and changes in mass flow. In order to find optimal instrument set to detect the physical faults such as fouling, erosion and corrosion, a gas path analysis approach is utilized. This study was performed in two cases for selection of optimal measurement parameters. One case was considered with the effect of instrument number by changing independent parameter number. The other case was performed with selection of independent parameter set. According to the analysis results, the optimal measurement parameters selected were eight dependent variables such as shaft horsepower, fuel flow rate, compressor exit pressure and temperature, compressor turbine inlet pressure and temperature and power turbine inlet pressure and temperature.

  • PDF

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.