DOI QR코드

DOI QR Code

Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4 MW

0.4 MW 급 분절형 아크 히터를 이용한 초음속 플라즈마 풍동 특성 실험

  • Kim, Min-Ho (High-enthalpy Plasma Research Center, Chonbuk National University) ;
  • Lee, Mi-Yeon (High-enthalpy Plasma Research Center, Chonbuk National University) ;
  • Kim, Jeong-Soo (High-enthalpy Plasma Research Center, Chonbuk National University) ;
  • Choi, Chea-Hong (High-enthalpy Plasma Research Center, Chonbuk National University) ;
  • Seo, Jun-Ho (High-enthalpy Plasma Research Center, Chonbuk National University) ;
  • Moon, Se-Yeon (High-enthalpy Plasma Research Center, Chonbuk National University) ;
  • Hong, Bong-Guen (High-enthalpy Plasma Research Center, Chonbuk National University)
  • Received : 2013.04.06
  • Accepted : 2013.08.19
  • Published : 2013.09.01

Abstract

Experimental analyses on a supersonic plasma wind tunnel of CBNU (Chonbuk National University) were carried out. In these experiments, a segmented arc heater was employed as a plasma source and operated at the gas flow rates of 16.3 g/s and the total currents of 300 A. The input power reached ~350 kW with the torch efficiency of 51.4 %, which is defined as the ratio of total exit enthalpy to the input power. The pressure of plasma gas in the arc heater was measured up to 4 bar while it was down to ~45 mbar in a vacuum chamber through a Laval nozzle. During this conversion process, the generated supersonic plasma was expected to have a total enthalpy of ~11 MJ/kg from the measured input power and torch efficiency. In addition to the measurement of total enthalpy, a cone type probe was inserted into the supersonic plasma flow in order to estimate the angle between shock layer and surface of the probe. From these measurements, the temperature and the Mach number of the supersonic plasma were predicted as ~2,950 K and ~3.7, respectively.

0.4 MW 급 분절형 아크 히터를 장착한 전북대학교 플라즈마 풍동의 초음속 유동 특성 실험을 수행하고 그 결과를 분석하였다. 실험에 사용된 분절형 아크 히터와 초음속 노즐은 16.3 g/s 의 질량유량에 대해 전극 당 150 A, 전체 300 A의 입력전류 조건으로 운전되었으며, 운전 결과 350 kW의 입력전력과 약 51.4 %의 열효율이 계측되었다. 이 때, 아크 히터 내 고엔탈피 플라즈마의 내부압력은 약 4 bar 로 측정되었으며, 이를 초음속 노즐을 통해 압력 45 mbar로 유지되는 진공쳄버 내로 팽창시킴으로써, 전체 엔탈피 11 MJ/kg을 가진 초음속 플라즈마 유동을 얻을 수 있었다. 전체 엔탈피 측정과 함께, 생성된 초음속 플라즈마 유동에 대해 원뿔각 $30^{\circ}$를 가진 원뿔 탐침을 삽입하여 경사 충격파와 이루는 각을 측정하였으며, 이 측정값들로부터, 발생된 초음속 플라즈마의 온도와 마하 수는 각각 약 2,950 K 및 약 3.7에 이를 것으로 예상되었다.

Keywords

References

  1. Anderson, J., "Modern compressible flow : with historical perspective", McGraw-Hill, New York, 2002.
  2. Auweter-Kurtz, M., Hald, H., Koppenwallner, G., and Speckmann, H. D., "German Experiments Developed for Reentry Mission," Acta Astronautica, Vol. 38, Jan. 1996, pp.47-61. https://doi.org/10.1016/0094-5765(95)00120-4
  3. Marschall, J., and Fletcher, D. G., "High-enthalpy Test Environments, Flow Modeling and In Situ Diagnostics for Characterizing Ultra-high Temperature," J. Eur. Ceram. Soc. Vol. 30, Aug. 2010, pp.2323-2336.
  4. Herdrich, G., Auweter-Kurtz M., and Kurtz. H. L.., "New Inductively Heated Plasma Source for Reentry Simulations," J. Thermophys. Heat Transfer, Vol. 14(2), 2000, pp.244-249. https://doi.org/10.2514/2.6515
  5. Bottin, B., Carbonaro, M., Zemsch S., and Degrez, G., "Aerothermodynamic design of an inductively coupled plasma wind tunnel" 32nd AIAA Thermophysics Conference (Atlanta, USA,1997), AIAA 97-2498.
  6. T. Ito, K. Ishida, M. Masahito, T. Sumi, K. Fujita, J. Nagai, H. Murata and T. Matsuzaki, "Heating Tests of TPS Samples in 110 kW ICP-heated Wind Tunnel," 24th International Symposium on Space Technology and Science (Miyazaki, Japan, 2004), p.553.
  7. M. Matsui, K. Komurasaki and Y. Arakawa, "Characterization of Arcjet Type Arc-Heater" Plumes 33rd Plasma dynamics and Lasers Conference (Maui, Hawaii, 2002), AIAA 2002-2242.
  8. Takahashi, Y., Kihara, h., and Abe, K., "Numerical Investigation of Nonequilibrium Plasma Flows in Constrictor- and Segmented- Type Arc Heaters," J. Thermophys. Heat Transfer, Vol. 24(1), 2010, pp.31-39. https://doi.org/10.2514/1.43565
  9. Purpura, C., Filippis, F., Graps, E., Trifoni, E., and Savino, R., "The GHIBLI Plasma Wind Tunnel: Description of the New CIRA-PWT Facility," Acta Astronaut. Vol. 61, 2007, pp.331-340. https://doi.org/10.1016/j.actaastro.2007.01.046
  10. Marieu, V., Reynier, Ph., Marraffa, L., Filippisa, F., and Caristia, C., "Evaluation of SCIROCCO plasma wind-tunnel capabilities for entry simulations in $CO_{2}$ atmospheres", Acta Astronaut., Vol. 61, 2007, pp.604-616. https://doi.org/10.1016/j.actaastro.2006.12.006
  11. Purpura, C., Filippis, F., Barrera, P., and Mandanici, D., "Experimental characterisation of the CIRA plasma wind tunnel SCIROCCO test section," Acta Astronaut. Vol. 62, 2008, pp.410-421. https://doi.org/10.1016/j.actaastro.2008.01.008
  12. Takahashi, Y., Kihara. H., and Abe, K., "Turbulence and Radiation Behaviours in Large-scale Arc Heaters," J. Phys. D: Appl. Phys. Vol. 44, 2011, 085203. https://doi.org/10.1088/0022-3727/44/8/085203
  13. Seo, J. H., Hong, B. G., Choi. S., Kim. D. U., "Numerical Design Study on a High-powered Segmented-type Arc Plasma Torch for a High-enthalpy Supersonic Plasma Wind Tunnel," J. Kor. Phys. Soc, Vol. 62[2], 2013, pp.250-257 https://doi.org/10.3938/jkps.62.250
  14. Seo, J. H., Choi, S., CHoi, S. S., Hong, B. G., "Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility," KSPE Journal., Vol. 15[4], 2011, pp.85-93.
  15. http;//www.grc.nasa.gov
  16. Boulos, M.I., Fauchais, P., Pfender, E., "Thermal Plasmas : Fundamentals and Applications Volume I", Plenum Press, New York and London, 1994.

Cited by

  1. Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle vol.22, pp.2, 2018, https://doi.org/10.6108/KSPE.2018.22.2.115