• Title/Summary/Keyword: Flow Dynamic Design

Search Result 566, Processing Time 0.03 seconds

Notch Filter Design for Power Line Communication based on OFDM (OFDM 기반 전력선 통신을 위한 Notch Filter 설계)

  • Lee, Hyun-So;Lee, Young-Hwan;Jang, Dong-Won;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.58-71
    • /
    • 2009
  • Today is the Information age which Internet service acts a most important Information Source. So A Power Line Communication has been achieved to offer Internet service for Last-Mile area. And Research is achieved to frequence range from 30MHz to 80MHz for High-speed communication service. But, Power Line is not suitable for communication, so, electric wave is generated from flow of communication information. And the electric wave is interfered with Wireless Communication Service using the same frequence range. In this paper, we calculated a 3 steps and 8 steps dynamic Notch Filter to consider the bandwidth of interference signals based on ETSI standard for reduce of interference between Power Line Communication and Wireless Communication Service. And we applied a Notch Filter and verified the application performance from Spectrum and BER.

Development of Integrated HVAC Noise Analysis Program for Ships (선박용 통합 HVAC 소음해석 프로그램 개발)

  • Han, Ju-Bum;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Nho-Seong;Chun, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.588-593
    • /
    • 2011
  • The Main design parameters of ship HVAC systems are pressure drop and noise analysis of ducts. The Noise prediction for HVAC(Heating, Ventilating and Air Conditioning) systems are normally performed by empirical method suggested by NEBB(National Environmental Balancing Bureau, 1994), but NEBB's method is not suitable for the ship HVAC systems. In this paper, numerical analysis methods are used to develop a noise prediction method for the ship HVAC systems, especially for large ducts. To develop regression formula of attenuation of sound pressure level in large duct, Boundary Element Method(BEM) is used. Using dynamic loss coefficient which is suggested by ASHRAE fitting data base and numerical methods of HVAC noise analysis, integrated HVAC noise analysis of Program is developed. The developed program can present pressure drop and noise analysis of the ship HVAC systems. To verify the accuracy and convenience of the developed program, prediction of HVAC system for Semi-Submersible Drilling RIG is carried out and the results are compared with measurement of noise level during sea trial.

  • PDF

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.

Control law design of gas generator for secondary combustion (이차 연소를 위한 가스발생기의 압력 제어기법 연구)

  • Park, Ik-Soo;Lee, Jae-Yoon;Choi, Ho-Jin;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.565-568
    • /
    • 2010
  • A pressure control law to regulate mass flow rate of gas generator is suggested. The governing equation is modeled by considering the burning rate of solid propellant and the conservation equation of gas generator. And then, a classical control law is applied after verifying the accuracy of dynamic model through comparing with ground test and internal ballistic results. The results show degradation of performance as shown in typical time varying system. To overcome this problem, an adaptive scheme is suggested and the performance is verified through numerical simulation.

  • PDF

Development of a Compact Nuclear Hydrogen Coupled Components Test Loop (원자로수소생산을 위한 연결부품 실험용 소형 컴팩트 실험장치 개발)

  • Hong, S.D.;Kim, J.H.;Kim, C.S.;Kim, Y.W.;Lee, W.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2850-2855
    • /
    • 2008
  • Very High Temperature Reactor (VHTR) has been selected as a high energy heat source for a nuclear hydrogen generation. The VHTR heat is transferred to a thermo-chemical hydrogen production process through an intermediate loop. Both Process Heat Exchanger and sulfuric acid evaporator provide the coupled components between the VHTR intermediate loop and hydrogen production module. A small scaled Compact Nuclear Hydrogen Coupled Components test loop is developed to simulate the VHTR intermediate loop and hydrogen production module. Main objective of the loop is to screening the candidates of NHDD (Nuclear Hydrogen Development and Demonstration) coupled components. The operating condition of the gas loop is a temperature up to $950^{\circ}C$ and a pressure up to 6.0MPa. The thermal and fluid dynamic design of the loop is dependent on the structures that enclose the gas flow, especially primary side that has fast gas velocity. We designed and constructed a small scale sulfuric acid experimental system which can simulate a part of the hydrogen production module also.

  • PDF

Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.100-113
    • /
    • 2017
  • Snap rolling during hard turning and instability during emergency rising are important features of submarine operation. Hydrodynamics modeling using a high incidence flow angle is required to predict these phenomena. In the present study, a quasi-steady dynamics model of a submarine suitable for high-incidence-angle maneuvering applications is developed. To determine the hydrodynamic coefficients of the model, static tests, dynamic tests, and control surface tests were conducted in a towing tank and wind tunnel. The towing tank test is conducted utilizing a Reynolds number of $3.12{\times}10^6$, and the wind tunnel test is performed utilizing a Reynolds number of $5.11{\times}10^6$. In addition, least squares, golden section search, and surface fitting using polynomial models were used to analyze the experimental results. The obtained coefficients are presented in tabular form and can be used for various purposes such as hard turning simulation, emergency rising simulation, and controller design.

E-ACPI : An Implementation of An Active Power Management Interface for Embedded Systems (E-ACPI : 임베디드 시스템에서 적극적 전력 관리를 위한 전력관리 인터페이스 구현)

  • Hwang, Young-Si;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.36-43
    • /
    • 2008
  • The OS has the manager of the overall system operation, and has the exact information of the running system. Power management by the OS may have great impact for the optimization of the power consumption. We implement E-ACPI, an extended ACPI which is designed for an advanced power management of embedded systems. In this paper, we address (i) how we extend the exiting ACPI to E-ACPI, (ii) technical challenges to overcome in implementation, and (iii) flow we port our E-ACPI to an embedded linux system in this paper. Experimental results show that our E-ACPI is very useful and effective in practice.

Aerodynamic and Structural Design of 6kW Class Vertical-Axis Wind Turbine (공탄성 변형효과를 고려한 5MW급 풍력발전 블레이드의 피치각에 따른 성능해석)

  • Kim, Yo-Han;Kim, Dong-Hyun;Hwang, Mi-Hyun;Kim, Kyung-Hee;Hwang, Byung-Sun;Hong, Un-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, performance analyses have been conducted for a 5MW class wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Reynolds-averaged Navier-Stokes (RANS) equations with K-${\epsilon}$ turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Predicted aerodynamic performance considering structural deformation effect of the blade show different results compared to the case of rigid blade model.

Effects of Driving Environment on Driver's Posture (주행중 운전자세 측정을 통한 주행조건 영향 분석)

  • Kim, Taeil;Choi, Kwangsoo;Jung, Eui S.;Park, Sungjoon;Choi, Jaeho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.271-282
    • /
    • 2003
  • Automotive occupant packaging has been a part of main ergonomics interests, especially, in terms of driver's posture. Previous research on driver's posture has mainly focused on the initial optimal posture for driving sedans. However, customer preferences on cars are shifting from sedans to RV and automobile manufacturing companies seek to understand temporal changes in drivers' posture according to driving environment. So the main aim of this study was to develop a driver's posture measurement system during driving and investigate casual changes due to duration, car type, traffic flow. Four male drivers participated in the experiments during one week. It was shown that considerable changes in their postures were caused with respect to driving environment, which implies that not only static optimal postures but their dynamic changes should be taken into consideration for proper design and evaluation of interior packaging. The research is expected to help packaging designers understand human drivers so as to improve their comfort.