• Title/Summary/Keyword: Flow Dynamic Design

Search Result 566, Processing Time 0.025 seconds

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

Development of the Low Noise Design Program for Construction Equipment's Muffler under the High Velocity Flow (유동 소음을 고려한 저소음 머플러 설계 프로그램 개발)

  • Kim, Hyung-Taek;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.483-488
    • /
    • 2008
  • The exhaust system, including a muffler, is one of the major sources to generate the radiated noise of construction equipment. In general, the muffler is applied to construction equipment in order to reduce the exhaust noise. Sometimes, however, the higher exhaust noise can be experienced due to the flow effect inside a muffler. So, it is required to consider the flow effect to reduce the exhaust noise level of construction equipment. In this paper, various tests were performed to calculate the flow noise effect inside a muffler. Through a series of tests with respect to a variety of design parameters, a new design program for low noise muffler was developed and applied to reduce the exhaust noise of the construction equipments. These results make it possible to understand the dynamic characteristics of the flow noise and to design the low noise muffler for the construction equipments.

  • PDF

A Design for Dynamic Line Rating System to increase Overhead Transmission Line Capacities (가공송전선의 송전용량을 증가시키기 위한 동적송전용량 시스템의 설계)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.72-77
    • /
    • 2011
  • Dynamic Line Rating (DLR) techniques have been greatly worthy of notice for efficiently increasing transmission capacity as well as controlling load-flow in overhead transmission lines, in comparison with the existing power system operating with Static Line Rating (SLR). This paper describes an utilization method to implement DLR control system for old transmission lines built in the first stage using the ground clearance design standard with lower dips. The suggested DLR system is focused on designing as temperature control system rather than current/load control system. Based on several performance for conductor temperatures, it is shown that DLR system with efficiency can be implemented.

Flow Visualization of Plastic type PCV Valve with Horizontal Force (수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화)

  • Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag (Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석)

  • Jang, Young-Gil;Choi, Yong-Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF

A Numerical Study on Flow Characteristics in HVOF Thermal Spray with Various Torch Shapes (노즐 형상변화에 따른 HVOF 용사총에서의 유동특성에 관한 수치적 연구)

  • Baik, Jae-Sang;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3062-3067
    • /
    • 2007
  • HVOF thermal spray guns are now being widely used to produce protective coatings, on the surfaces of engineering components. HVOF technology employs a combustion process to heat the gas flow and melt the coating materials which are particles of metals, alloys or cermets. Particle flow which is accelerated to high velocities and combustion gas stream are deposited on a substrate. In order to obtain good quality coatings, the analysis of torch design must be performed. The reason is that the design parameters of torch influence gas dynamic behaviors. In this study, numerical analysis is performed to predict the gas dynamic behaviors in a HVOF thermal spray gun with various torch shapes. The CFD model is used to deduce the effect of changes in nozzle geometry on gas dynamics. Using a commercial code, FLUENT which uses Finite Volume Method and SIMPLE algorithm, governing equations have been solved for the pressure, velocity and temperature distributions in the HVOF thermal spray torch.

  • PDF

Historical Perspective on Fluid Machinery Flow Optimization in an Industry

  • Goto, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Fluid-dynamic design of fluid machinery had heavily relied on empiricism and experimental observations for many years. Since 1980s, thanks to the advancements in Computational Fluid Dynamics (CFD), a variety of flow physics have been revealed. The contribution by CFD is indispensable; however, the challenge is required not only on the advancements in CFD technologies but also innovation of "design (optimization) technologies" because of the complex interactions between 3-D flow fields and the complex 3-D flow passage configurations, etc. This paper presents historical perspective on fluid machinery flow optimization in an industry with some messages for the future.

A Study on the computer aided design for flow control valve of vane pump (베인 펌프용 유량 제어부의 전산설계에 관한 연구)

  • 이윤태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.555-560
    • /
    • 2000
  • The modeling and the numerical analysis are done so as to develop the Computer Aided Design program for the design of flow control valve attached to the vane pump. The factors affecting the flow rate characteristics, are analyzed by the experiments and the numerical methods. It is shown that the main factor affecting to the first control flow is the diameter of small rod of the spool, the main factor affecting to the second control flow is the diameter of big rod of the spool, the main factors affecting to the cut off are the main spring constant, the initial displacement of main spring and small diameter of the spool, and the dropping slope characteristics of flow rate are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

Development of Atomization Spraying System for Solvent-free Paint(I) - Flow Analysis of Hydraulic Actuator - (무용제 도료용 무화 분사시스템 개발(I) - 유압 엑츄에이터의 유동해석 -)

  • Kim, Dong-Keon;Kim, Bong-Hwan;Shin, Sun-Bin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this paper is to design a hydraulic actuator to operate under high pressure conditions. The flow characteristics under design conditions of hydraulic actuator were numerically conducted by commercial fluid dynamic code(ANSYS CFX V11). The numerical analysis was performed by transient technique according to the variation of stroke times, which was changed from 0 to 1 second by interval of 0.01. Turbulence model, $k-\omega$ SST was selected to secure more accurate prediction of hydraulic oil flow. The ICEM-CFD 11 and CFXMesher, reliable grid generation software was also adapted to secure high quality grid necessary for the reliable analysis. According to the simulation results, the flow rate which was supplied to the hydraulic actuator was 30.4l/min. These results are in good agreement with design results within 3.5% error.

Design of Scheduling System for Flexible Manufacturing Cells (FMC에서의 일정계획 시스템의 설계)

  • 신대혁;이상완
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.63-71
    • /
    • 1994
  • The purpose of this paper is to describe an effective cell scheduling system for flexible manufacturing cells. Based on the FMC characteristics, cell scheduling can be defined as a dynamic modified flow shop working in a real-time system. This paper attempt to find the optimal cell scheduling when minimizing the mean flow time for n-job/m-machine problems in static and dynamic environments. Real-time scheduling in an FMC environment requires rapid computation of the schedule.

  • PDF