• 제목/요약/키워드: Flow Duration Curves (FDC)

검색결과 8건 처리시간 0.017초

오염총량관리제 지원을 위한 유역모형 기반 유량지속곡선 및 부하지속곡선 활용방안 (Application of FDC and LDC using HSPF Model to Support Total Water Load Management System)

  • 이은정;김태근;금호준
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.33-45
    • /
    • 2018
  • In this study, we discussed the application of Watershed model and Load Duration Curves (LDC) in Total Water Load Management System. The Flow Duration Curves (FDC) and the LDC were generated using the results of the daily HSPF model and analyzed on monthly or yearly flow duration variability, and non-point pollutant discharge loads by entire flow conditions. As a result of the calibration and verification of the HSPF model, both the flow and the water quality were appropriately simulated. The simulated values were used to generate the Flow Duration Curve and the Load Duration Curve, and then the excess rate by entire flow conditions was analyzed. The point and non-point pollutant discharge loads for entire flow conditions were calculated. It is possible to evaluate the variability of water quality in specific flow duration through the curves reflecting the flow duration variability and to confirm the characteristics of the pollutant source. For a more scientific Total Water Load Management System, it is necessary to switch from a current system to a system that can take into account the entire flow conditions. For this, the application of the watershed model and load duration curve is considered to be the best alternative.

수질오염총량관리를 위한 4대강수계 장기유황곡선 작성방안 (Development of Long Term Flow Duration Curves in 4 River Basins for the Management of Total Maximum Daily Loads)

  • 박준대;오승영
    • 한국물환경학회지
    • /
    • 제29권3호
    • /
    • pp.343-353
    • /
    • 2013
  • Flow duration curve (FDC) can be developed by linking the daily flow data of stream flow monitoring network to 8-day interval flow data of the unit watersheds for the management of Total Maximum Daily Loads. This study investigated the applicable method for the development of long term FDC with the selection of the stream flow reference sites, and suggested the development of the FDC in 4 river basins. Out of 142 unit watersheds in 4 river basins, 107 unit watersheds were shown to estimate daily flow data for the unit watersheds from 2006 to 2010. Short term FDC could be developed in 64 unit watersheds (45%) and long term FDC in 43 unit watersheds (30%), while other 35 unit watersheds (25%) were revealed to have difficulties in the development of FDC itself. Limits in the development of the long term FDC includes no stream monitoring sites in certain unit watersheds, short duration of stream flow data set and missing data by abnormal water level measurements on the stream flow monitoring sites. To improve these limits, it is necessary to install new monitoring sites in the required areas, to keep up continuous monitoring and make normal water level observations on the stream flow monitoring sites, and to build up a special management system to enhance data reliability. The development of long term FDC for the unit watersheds can be established appropriately with the normal and durable measurement on the selected reference sites in the stream flow monitoring network.

낙동강수계 수질오염총량관리를 위한 시범소유역 유황별 유달율 산정방법 연구 (A Study on Estimation of the Delivery Ratio by Flow Duration in a Small-Scale Test Bed for Managing TMDL in Nakdong River)

  • 손태석;박재범;신현석
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.792-802
    • /
    • 2009
  • The objective of this study is to construct the watershed management system with link of the non-point sources model and to estimate delivery ratio duration curves for various pollutants. For the total water pollution load management system, non-point source model should be performed with the study of the characteristic about non-point sources and loadings of non-point source and the allotment of pollutant in each area. In this study, daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator and SWAT model. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. As a result, the SWAT simulation results show good agreements in terms of discharge, BOD, TN, TP but for more exact simulation should be kept studying about variables and parameters which are needed for simulation. And as a result of the characteristic discharges, pollutants loading with the runoff and delivery ratios, non-point sources effects were higher than point sources effects in the small-scale test bed of Nakdong river basin.

부하지속곡선을 이용한 삽교호수계 지류하천의 오염원인 분석 (Estimation of Pollution Using Load Duration Curves at Streams in Sapgyo Watershed)

  • 최정호;김홍수;조병욱;박상현;이무규;이병구
    • 한국물환경학회지
    • /
    • 제37권3호
    • /
    • pp.175-189
    • /
    • 2021
  • In this study, 48 streams in the Sapgyo Watershed were selected, and the Load Duration Curves (LDC) were drawn up for each stream using water quality and flow monitoring over the last three years (2018-2020), and it was evaluated whether the target water quality was achieved for each flow section. As a result of evaluating whether or not the target water quality exceeded according to the LDC, it was found that 22 rivers exceeded the target water quality. Five rivers exceeded the target water quality due to point pollutant sources, 13 rivers exceeded the target water quality due to non-point pollutant sources, and 4 rivers exceeded the target water quality due to both point and non-point pollutant sources. Among the rivers that exceeded the target water quality due to point pollutant sources, which included domestic sewage of the untreated population, there is a need to reduce the influx of polluted loads by the untreated population. The use of eco-friendly fertilizers is recommended for rivers with a relatively high farmland ratio among rivers exceeding the target water quality due to non-point pollutant sources, and installation of boiling point reduction facilities that can reduce the amount of polluted load introduced during rainfall or manage water shores. In rivers with a large number of livestock breeding heads, the livestock houses located in these rivers need to be preferentially transferred to livestock manure treatment plants. Due to the high ratio of land area because of urbanization, initial rainwater treatment facilities are required to reduce the amount of pollutant load flowing into the river through the impermeable layer during rainfall.

미계측 유역의 유황곡선 산정을 위한 지역회귀모형의 개발 (Development of Regional Regression Model for Estimating Flow Duration Curves in Ungauged Basins)

  • 이태희;이민호;이재응
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.427-437
    • /
    • 2016
  • 본 연구에서는 지형 및 기상학적 인자만으로 미계측 유역의 저유량부 유황곡선을 추정할 수 있는 지역회귀모형을 개발하고자 하였다. 이를 위해서 16개 유역의 계측 자료로부터 저유량 영역(지속일수 185일에서 365일)에 대한 유황곡선을 작성하고, 이를 토대로 로그형태의 이변수 회귀모형을 구축하였다. 이 회귀모형을 미계측 유역에 적용할 수 있도록 유역면적, 유역경사, 수계밀도, 연평균강수량, 연평균유출량, 유출곡선지수 등의 유역특성인자를 이용하여 모형의 매개변수를 지역화 하였다. 개발한 지역회귀모형으로 평균갈수량, 평균저수량, 평균평수량을 추정하여 관측값과 비교한 결과, 유역면적, 유출곡선지수, 연평균강수량 조합으로 구성된 지역회귀모형이 가장 우수한 것으로 분석되었다.

총량관리 단위유역 일평균유량의 시계열 누적 변화에 따른 유량지속곡선 차이 분석 (Analysis of the Difference of Flow Duration Curve according to the Cumulative Variation of the Daily Average Flow in Unit Watershed for TPLCs)

  • 황하선;이한필;서지연;최유진;박지형;신동석;이성준
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.97-109
    • /
    • 2018
  • The LDC (Load Duration Curve) method can analyze river water quality changes according to flow rate and seasonal conditions. It is also possible to visually recognize whether the target water quality is exceeded or the size of the reduction load. For this reason, it is used for the optimal reduction of TPLCs and analysis of the cause of water pollution. At this time, the flow duration curve should be representative of the water body hydrologic curve, but if not, the uncertainty of the interpretation becomes big because the damaged flow condition is changed. The purpose of this study is to estimate the daily mean flow of the unit watershed using the HSPF model and to analyze the difference of the flow duration curves according to the cumulative daily mean flow rate using the NSE technique. The results show that it is desirable to construct the flow duration curve by using the daily average flow rate of at least 5 years although there is a difference by unit watershed. However, this is the result of the water bodies at the end of Han River basin watershed, so further study on various water bodies will be necessary in the future.

LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가 (A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT))

  • 최정렬;안성욱;최진영;김병식
    • 한국수자원학회논문집
    • /
    • 제54권spc1호
    • /
    • pp.1107-1118
    • /
    • 2021
  • 지구온난화로 인해 발생한 기후변화는 한반도의 홍수, 가뭄 등의 발생빈도를 증가시켰으며, 이로 인해 인적, 물적 피해가 증가한 것으로 나타났다. 수재해 대비 및 대응을 위해서는 국가 차원의 수자원 관리 계획 수립이 필요하며, 유역 단위 수자원 관리를 위해서는 장기간 관측된 유량 자료를 이용하여 도출된 유량지속곡선이 필요하다. 전통적으로 수자원 분야에서 유량지속곡선을 도출하기 위하여 물리적 기반의 강우-유출 모형이 많이 사용되고 있으며, 최근에는 데이터 기반의 딥러닝 기법을 이용한 유출량 예측 기법에 관한 연구가 진행된 바 있다. 물리적 기반의 모형은 수문학적으로 신뢰도 높은 결과를 도출할 수 있으나, 사용자의 높은 이해도가 요구되며, 모형 구동 시간이 오래 걸릴 수 있는 단점이 있다. 데이터 기반의 딥러닝 기법의 경우 입력 자료가 간단하며, 모형 구동 시간이 비교적 짧으나 입력 및 출력자료 간의 관계가 블랙박스로 처리되어 수리·수문학적 특성을 반영할 수 없는 단점이 있다. 본 연구에서는 물리적 기반 모형으로 국내외에서 적용성이 검증된 Soil Water Assessment Tool (SWAT)의 매개변수 보정(Calibration)을 통해 장기간의 결측치 없는 데이터를 산출하고, 이를 데이터 기반 딥러닝 기법인 Long Short-term Memory (LSTM)의 훈련(Training) 데이터로 활용하였다. 시계열 데이터 분석 결과 검·보정 전체 기간('07-'18) 동안 Nash-Sutcliffe Efficiency (NSE)와 적합도 비교를 위한 결정계수는 각각 0.04, 0.03 높게 도출되어 모형에서 도출된 SWAT의 결과가 LSTM보다 전반적으로 우수한 것으로 나타났다. 또한, 모형에서 도출된 연도별 시계열 자료를 내림차순하여 산정된 유량지속곡선과 관측유량 기반의 유량지속곡선과 비교한 결과 NSE는 SWAT과 LSTM 각각 0.95, 0.91로 나타났으며, 결정계수는 0.96, 0.92로 두 모형 모두 우수한 성능을 보였다. LSTM 모형의 경우 저유량 부분 모의의 정확도 개선이 필요하나, 방대한 입력 자료로 인해 모형 구축 및 구동 시간이 오래 걸리는 대유역과 입력 자료가 부족한 미계측 유역의 유량지속곡선 산정 등에 활용성이 높을 것으로 판단된다.

유량-부하량관계식을 이용한 주암호 외남천 유역의 유황별 유달율 산정 (Estimation of Pollutant Load Delivery Ratio for Flow Duration Using L-Q Equation from the Oenam-cheon watershed in Juam Lake)

  • 최동호;정재운;이경숙;최유진;윤광식;조소현;박하나;임병진;장남익
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.31-39
    • /
    • 2012
  • The objective of this study is to provide pollutant loads delivery ratio for flow duration in Oenam-cheon watershed, which is upstream watershed of Juam Lake. To calculate the delivery ratio by flow duration, rating curves and discharge-loads curves using measured data were established, then Flow Duration Curve(FDC) and pollutant loads delivery ratio curves were constructed. The results show that the delivery ratios for $BOD_5$ for abundant flow($Q_{95}$), ordinary flow($Q_{185}$), low flow($Q_{275}$), and drought flow($Q_{355}$) were 23.9, 12.7, 7.1, and 2.9%, respectively. The delivery ratios of same flow regime for T-N were 58.4, 31.2, 17.2 and 7.1%, respectively. While, the delivery ratios T-P were 17.3, 7.5, 3.4, and 1.1% respectively. In general, delivery ratio of high flow condition showed higher value due to the influence of nonpoint source pollution. Based on the study results, generalized equations were developed for delivery ratio and discharge per unit area, which could be used for ungaged watershed with similar pollution sources.