• Title/Summary/Keyword: Flow Control System

Search Result 3,067, Processing Time 0.035 seconds

Feeder Flow Control Algorithm for Photovoltaic-Fuel cell Hybrid System in Micro-Grid (마이크로그리드에서 태양광-연료전지 하이브리드 시스템의 Feeder Flow Mode 운영 기법)

  • Moon, Dae-Seong;Gang, Gi-Hyeok;Kim, Yun-Seong;Seo, Jae-Jin;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.161-163
    • /
    • 2008
  • The paper deals with a inverter control scheme to apply feeder flow control in the hybrid system consisted of a photovoltaic system and a fuel-cell system. The inverter operation modes and a feeder control reference is changed by changing of the loads. Simulation results using the PSCAD/EMTDC are presented to establish a inverter control method for a Feeder flow control mode.

  • PDF

Flow Compensating Characteristics for the Speed Variation of a Boom Sprayer (붐방제기용 주행속도 보상식 유량제어부의 동특성)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 1998
  • Over- and under-application of pesticides to crops have recently become main concerns regarding the environment conservation, product cost and firmer's safety. Thus, a uniform and optimal application method of pesticides was needed. The objective of study was to evaluate flow compensating characteristics of a variable flow control system for a boom sprayer using a laboratory setup. At the most variable conditions, the control system was acceptable with the flowrate control strategy. However, the sprayer control system became unstably fluctuating at the long execution time with small tolerance because of the constant valve on-time. This problem was solved by employing a variable on-time control. The optimal values for the damping ratio and the execution time were 2 and 1.0 sec, respectively, with the tolerances less than 3%. The performance of the control system at the optimal conditions were the response time of 3.8sec and the absolute steady-state error of 0.5% with the stable RCV and ROS ( < 1.0).

  • PDF

Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP (수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석)

  • Han, Myung-Chul;Kim, Jung-Kwan;Kim, Kwang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

Development of an Ultrasonic Gas Flow Meter Using Transit Time Difference (전달 시간차 방식 초음파 가스 유량계)

  • 박상국;황원호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.707-713
    • /
    • 2003
  • We investigate the ultrasonic gas flow meter for the measurement of gas volume quantity, which passing through pipe, using the transit time difference method. We have designed a receiving system of an ultrasonic signal and hardware system of a flow meter Also, we have designed an experimental system for the characteristic test and calibration of a gas flow meter system. We have developed an ultrasonic gas flow meter, which has a measurement uncertainty within $\pm$ 1.7 %. For the test, we have compared our system with a difference pressure type flow meter for a few months in the real field. Through the test, we have confirmed that our system have a good reliability and durability. Also, we have confirmed that our system follows very well the variation of gas volume quantity, which was measured by a difference pressure type flow meter.

A Flow Quantity Distribution Characteristics of the Hot Water Header for Individual Room Control System (실별제어 온수분배기의 유량분배 특성)

  • Sung, Sun-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Flow quantity to supply to a coil in floor heating system is important to achieve comfortable indoor air condition in the winter season. The hot water header is used to distribute the water into the coil. Experimental study has been performed using the water header that have 5 branches consisted of flow control valves and automatic shut-off valves. Each branch line connected it with X-L pipe. Experimental tests accomplished it to investigate the flow distribution characteristics of the hot water header. Experimental results show that the selection of the pump head and differential pressure are very important to save running energy of the system, and high differential pressure needs more friction loss in the case of suitable differential pressure for balancing of the header.

Control of Left Ventricular Assist Device Using Neural Network Feedforward Controller (인공신경망 Feedforward 제어기를 이용한 좌심실 보조장치의 제어실험)

  • 정성택;김훈모;김상현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.83-90
    • /
    • 1998
  • In this paper, we present neural network for control of Left Ventricular Assist Device(LVAD) system with a pneumatically driven mock circulation system. Beat rate(BR), Systole-Diastole Rate(SDR) and flow rate are collected as the main variables of the LVAD system. System modeling is completed using the neural network with input variables(BR, SBR, their derivatives, actual flow) and output variable(actual flow). It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately. the neural network can be applied to control of a nonlinear dynamic system by learning capability In this study, we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by experiment.

  • PDF

Development of Flow Control Valves for Hot Water Distribution Manifolds (온수분배기용 유량제어밸브의 개발)

  • Kwon, Woo-Chul;Yoon, Joon-Yong;Yoo, Sun-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2010
  • The developed control valves, installed on the hot water distribution manifolds for the floor heating system, consist of the balancing valves and the shut-off valves. The balancing valve was designed to improve the flow control performance and to reduce the noise emitted from the valve by modification of the general V port. The port of the shut-off valve was designed with two ceramic plates, working by rotating upper plate, to improve the duration and to reduce the noise. For the evaluation of the new valves, the flow rate was measured and noise level test was carried out. The test results showed that the error of the flow rate accuracy test for the flow balance of each manifold circuit was less than ${\pm}3%$ and the noise level was less than 35 dB(A).

Development of a Flow Compensating Boom Sprayer for the Speed Variation (주행속도 보상형 붐방제기의 개발)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.211-218
    • /
    • 1998
  • A variable flow-controlled boom sprayer was developed and evaluated. Field tests were conducted to evaluate the adoptability of the sprayerr with optimal conditions. Negative response time was obtained from the field test because pump and PTO were interlocked with the speed of sprayer. Another reason for the negative value was due to the definition of the response time. With constant on-time control, the system was unstable at the conditions of small tolerance and long control interval. The performances of the spray system were stable and accurate. The stable and synchronous responses were achieved with a variable on-time control. The flow control system with an optimal condition (1.0 sec of control interval, 2 of damping ratio, 1% of tolerance) provided the proper performance for uniform spraying. A standard operating procedure of the flow compensating boom sprayer for the ground speed variation was presented and recommended.

  • PDF

PASSlVE SHOCK CONTROL IN TRANSONIC FLOW FIELD

  • Matsuo S;Tanaka M;Setoguchi T;Kashimura H;Yasunobu T;Kim H.D
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.80-86
    • /
    • 2005
  • In order to control the transonic flow field with a shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock-boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

Effect of Reynolds Number on the Flow Characteristics of a Control Valve (제어밸브 유량특성에 레이놀즈 수가 미치는 영향)

  • Jung, Taekyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.995-999
    • /
    • 2017
  • The factors affecting the flow coefficient of a control valve were identified and analyzed. The flow coefficient of a control valve are affected by not only Reynolds Number but also the figure and the roughness of the inlet/outlet pipes. Therefore, the flow coefficient is not a constant value. For the purpose of use in the system such as LRE, requiring the exact flow-coefficient of a control valve, the flow-coefficient should be measured under similar Reynolds Number using the inlet and outlet pipes which have the same figure and roughness with a real system.

  • PDF