• Title/Summary/Keyword: Flow Control System

Search Result 3,067, Processing Time 0.031 seconds

Studies on the Fracture Healing in the Alloxan treated Rabbits (Alloxan 투여 가토(家兎)에 대한 골절치유 실험)

  • Kim, Sung-Joon
    • The Korean Journal of Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.53-65
    • /
    • 1971
  • It is well known that diabetes mellitus is associated with metabolic derangements, such as hyper-glycemia, ketosis, glycosuria, and also widespread alterations in the blood vessels, kidneys, eyes, peripheral nerves and heart. It is also recognized that healing of skin wound is delayed in diabetics. In bone, according to Aegerter, osteopenia develops in diabetes mellitus and it is chiefly ascribed to overutilization of protein. Shim claims that total blood flow to the entire skeletal system is approximately 4 to 8 percent of resting cardiac output and blood supply to the skeletal system would be decreased on account of secondary arteriosclerotic changes in the diabetics. An adequate blood supply is an essential factor in the healing process of fracture, and disturbed blood flow, either local or systemic, will invariably delay union of the fragments or the fragments from being fused. As the author has encountered several cases of diabetics in whom healing of fracture was delayed or incomplete, this experimental study was undertaken to elucidate the effects of hyperglycemia and diabetes mellitus on the healing process of fracture. In this experiment adult albino rabbits, weighing about 2 kg. were used and divided into 6 groups. The femur of each animal was fractured surgically, and then the healing process of fracture was periodically checked by radiography at an interval of one week for a period of 6 weeks. Thereafter, all the rabbits were killed to obtain tissue preparation of the femur. The experimental groups were as follows; 1) Control group: Six rabbits sustained a surgical fracture to the femur, without being given any other treatment or drug. 2) Alloxan-treated group: For inducing diabetes, alloxan was given intravenously to 17 rabbits in various dose as follows; to 7 of them 40 mg/kg, to 6 rabbits 80 mg/kg and to 4 rabbits 120 mg/kg of body weight, respectively. 3) Insulin-treated group: Protamine-zinc insulin was injected subcutaneously to each of 6 rabbits in a daily dose of 1 unit per kilogram of body weight. 4) Group treated with insulin after alloxan: Four rabbits were given 80 mg of alloxan once and than 1 unit of insulin per kilogram of body weight daily. Another 5 rabbits were injected 1 unit of insulin per kg of body weight daily following administration of alloxan in a dose of 120 mg/kg. 5) Homotransplantation group: Following intravenous injection of alloxan in a dose of 120 mg/kg, 10 rabbits underwent homotransplantation of a short bone segment to the femur. Five of them were subsequently given 1 unit/kg of insulin daily. 6) Sugar-treated group: six rabbits were fed $15{\sim}20$ gm of sugar daily throughout the period of experiment. The results obtained are summarized as follows; 1. Blood sugar level and damage to the pancreatic islet increased proportionately when alloxan was given to the rabbits in various doses. No appreciable change could be observed in the islets when the blood sugar level was altered by either oral administration of sugar or subcutaneous injection of insulin. 2. Comparing with the control group, healing of fracture was delayed in the alloxan-treated group, while callus formation and periosteal reaction were shown to be more prominent in this group and subsequently, the ultimate osseous tissue formed at the fracture site was significantly smaller in amount and less compact. These findings were more marked as the amount of alloxan increased. 3. Administration of insulin prevented the delay in healing process of fracture in the rabbits with alloxan-induced hyperglycemia. In this case, the course and progression of fracture healing were almost similar to those of control group. 4. Union between the host bone and the fragment transplanted from other rabbit of the same species was more delayed in the group treated with alloxan alone than in the group to which insulin was administered after development of alloxan-induced diabetes. In both groups periosteal new bone developed from the ends of the host bone, above and below the transplanted fragment, and directly fused with failure of periosteal callus to bridge the adjacent ends of the host bone and the transplanted fragment. 5. The healing process of fracture was not inhibited by alteration in blood sugar level when the blood sugar was abnormally increased by excessive sugar intake or lowered by administration of insulin alone. The healing of fracture in these groups progressed similarly as in the control group. In brief summary, it appears that the healing process of fracture would be definitely disturbed in diabetic state brought about by damage to the pancreatic islet. As such an inhibition could be overcome with insulin, it seems that insulin plays an important role in healing of fracture, but alteration in blood sugar level alone does not modify healing process of fracture to significant degree.

  • PDF

A Study on the Hood Performance Improvement of Pickling Tank using CFD (전산유체역학을 이용한 산세조 후드 성능 개선에 관한 연구)

  • Jung, Yu-Jin;Park, Ki-Woo;Shon, Byung-Hyun;Jung, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.593-601
    • /
    • 2014
  • In this study, we investigated the methods of improving the capturing ability of acid fume by assessing the performance of slot-type external hood installed on both sides of an open surface tank for acid washing process. A field survey and the results of computational fluid dynamics revealed that capturing performance of existing hoods is very poor. To solve such problem, 'push-pull hood' that pushes from one side of an open surface tank and pulls on the other side was suggested. The initial prediction was that if a push-pull hood is used, the acid fume of an acid-washing tank surface could be moved towards the hood through the push flow. However, this study has confirmed that if the push flow velocity becomes too high, it could spread to other areas due to flooding from the hood. Therefore, if the push air supply is maintained at around 25 $m^3/min$(push 10 m/s), proper control flow is formed on the surface of a tank and acid fume that stayed at the upper part of the tank is smoothly captured toward the hood, significantly enhancing the capturing performance.

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.

Groundwater Flow Modeling and Suggestion for Pumping Rate Restriction around K-1 Oil Stockpiling Base with Geological Consideration (지질조건을 고려한 K-1 비축기지 주변의 지하수 모델링과 양수량 제한구역 제안)

  • Moon, Sang-Ho;Kim, Kue-Young;Ha, Kyoo-Chul;Kim, Young-Seog;Won, Chong-Ho;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.169-181
    • /
    • 2010
  • This study aimed at simulating several responses to stresses caused by the ground water level variations around the K-1 oil stockpile. For this simulation, we considered the characteristic hydrogeological condition including the special occurrence of long and thick acidic dyke, which is regarded as the main geological structure dominating the ground water flow system at this study area. We activated twenty-four imaginary wells which are located in northern and southern area around central K-1 site. Each neighboring distance is altogether 300 m and whole distance between K-1 site and remote wells is 1,200 m. Through the modeling, we operated the long-term and continuous pumping tests and finally categorized five zones based on maximum pumping rates for the imaginary wells; zone I within 300 meter distance from K-1 site with a pumping rate of 50 $m^3/day$; zone II between 300 to 600 meter distance from K-1 site with a pumping rate of 75 $m^3/day$; zone III between 600 to 900 meter distance from K-1 site with 150 $m^3/day$; zone IV between 900 to 1,200 meter distance from K-1 site with 300 $m^3/day$; and zone V of acidic dyke area. At zone V, especially because of their possibility of high transmissivity for groundwater flow, it is necessary to control and restrict groundwater discharge.

Sanitary Control of Aquarium Tank Water with U.V. Light (자외선을 이용한 활어용 수조수의 위생 대책 수립)

  • CHOI Seung-Tae;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.428-434
    • /
    • 1995
  • The purpose of this study is to develop a sanitary aquarium for the safety slices of raw fish by using U.V. light. Water re-circulating system was composed of two tanks. One of the tanks $(90\times45\times45cm\;in\;size),$ was used for rearing fish and the other $(90\times45\times45cm\;in\;size),$ with 37 pieces of corrugated plastic plates was used for the growth of Nitrosomonas and Nitrobacter to remove ammonia from the water. Consequently, bactericidal effects of U.V. light were examined under the controlled condition of water with flow rate 730m1/sec (water flow thickness: 10mm), the width 41cm of water flow route, and the distance 4.75cm from the lamp to its water bottom, and U.V. light 75W (5 lamps). The water of the aquarium tank will be theroetically circulated 1 cycle per 18 min. In these conditions the bactericidal effect was $85\%$ just after passing through U,V. light and 3 log cycle in aquarium tank water. The count of Vibrio parahaemolyticus just after irradiation was decreased by about over than 3 log cycle. Under the irradiation for 72 hours, viable cell counts in both skin and gill of fish reared were decreased into about 2 log cycle, but there was no significant decrease in viscera. When the temperature of the tank was controlled at about $20-23^{\circ}C$ under the same condition, viable cell counts were reduced about 2 log cycle, and fecal coliforms were reduced about 1 log rycle and 3 log cycle in Crassostrea gigas and Mytilus edulis, respectively.

  • PDF

Application of SWAT for the Estimation of Soil Loss in the Daecheong Dam Basin (대청댐 유역 토양 침식량 산정을 위한 SWAT 모델의 적용)

  • Ye, Lyeong;Yoon, Sung-Wan;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.149-162
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) developed by the USDA-Agricultural Research Service for the prediction of land management impact on water, sediment, and agricultural chemical yields in a large-scale basin was applied to Daecheong Reservoir basin to estimate the amount of soil losses from different land uses. The research outcomes provide important indications for reservoir managers and policy makers to search alternative watershed management practices for the mitigation of reservoir turbidity flow problems. After calibrations of key model parameters, SWAT showed fairly good performance by adequately simulating observed annual runoff components and replicating the monthly flow regimes in the basin. The specific soil losses from agricultural farm field, forest, urban area, and paddy field were 33.1, $2.3{\sim}5.4$ depending on the tree types, 1.0, and 0.1 tons/ha/yr, respectively in 2004. It was noticed that about 55.3% of the total annual soil loss is caused by agricultural activities although agricultural land occupies only 10% in the basin. Although the soil erosion assessment approach adopted in this study has some extent of uncertainties due to the lack of detailed information on crop types and management activities, the results at least imply that soil erosion control practices for the vulnerable agricultural farm lands can be one of the most effective alternatives to reduce the impact of turbidity flow in the river basin system.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter(II) -Structural Improvement (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(II) -구조개선을 중심으로)

  • Kim, Jin-Uk;Jung, Yu-Jin;Yoo, Jeong-Kun;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.985-992
    • /
    • 2011
  • The 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics and flow distribution for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. Three types of modifications such as i) changing the plenum shape, ii) orifice install in the exit part of cleaned gas, iii) increasing the plenum number were established. From the results of computational fluid dynamics, it was revealed that the changing of plenum shape and orifice install in the exit part of cleaned gas was more reasonable than the increasing the plenum number because of the difficulties of retrofit. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, save the installation area, save the operation fee, and management more convenient.

Comparison of Volume of Fluid (VOF) type Interface Capturing Schemes using Eulerian Grid System (오일러 격자체계에서 유체율 함수에 기초한 경계면 추적기법의 비교)

  • Kim, Do-Sam;Kim, Tag-Gyeom;Shin, Bum-Shick;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The application of multiphase flows is increasingly being applied to analyze phenomena such as single phase flows where the fluid boundary changes continuously over time or the problem of mixing a liquid phase and a gas phase. In particular, multiphase flow models that take into account incompressible Newtonian fluids for liquid and gas are often applied to solve the problems of the free water surface such as wave fields. In general, multi-phase flow models require time-based the surface tracking of each fluid's phase boundary, which determines the accuracy of the final calculation of the model. This study evaluates the advection performance of representative VOF-type boundary tracking techniques applied to various CFD numerical codes. The effectiveness of the FCT method to control the numerical flux to minimize the numerical diffusion in the conventional VOF-type boundary tracking method and advection calculation was mainly evaluated. In addition, the possibility of tracking performance of free surface using CIP method (Yabe and Aoki, 1991) was also investigated. Numerical results show that the FCT-VOF method introducing an anti-diffusive flux to precent excessive diffusion is superior to other methods under the confined conditions in this study. The results from this study are expected to be used as an important basic data in selecting free surface tracking techniques applied to various numerical codes.

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.

Principles and Applications of Multi-Level H2O/CO2 Profile Measurement System (다중 수증기/이산화탄소 프로파일 관측 시스템의 원리와 활용)

  • Yoo, Jae-Ill;Lee, Dong-Ho;Hong, Jin-Kyu;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • The multi-level profile system is designed to measure the vertical profile of $H_2O$ and $CO_2$ concentrations in the surface layer to estimate the storage effects within the plant canopy. It is suitable for long-term experiments and can be used also in advection studies for estimating the spatial variability and vertical gradients in concentration. It enables the user to calculate vertical fluxes of water vapor, $CO_2$ and other trace gases using the surface layer similarity theory and to infer their sources or sinks. The profile system described in this report includes the following components: sampling system, calibration and flow control system, closed path infrared gas analyzer(IRGA), vacuum pump and a datalogger. The sampling system draws air from 8 inlets into the IRGA in a sequence, so that for 80 seconds air from all levels is measured. The calibration system, controlled by the datalogger, compensates for any deviations in the calibration of the IRGA by using gas sources with known concentrations. The datalogger switches the corresponding valves, measures the linearized voltages from the IRGA, calculates the concentrations for each monitoring level, performs statistical analysis and stores the final data. All critical components are mounted in an environmental enclosure and can operate with little maintenance over long periods of time. This report, as a practical manual, is designed to provide helpful information for those who are interested in using profile system to measure evapotranspiration and net ecosystem exchanges in complex terrain.