• Title/Summary/Keyword: Flow Control System

Search Result 3,071, Processing Time 0.037 seconds

Analysis of fast pressure control by the Ziegler-Nichols method for a transport module of a high vacuum cluster tool (고진공 클러스터 장비의 반송모듈에 적용된 Ziegler-Nichols 방법에 의한 고속 압력제어에 관한 해석)

  • 장원익;이종현;백종태
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.284-291
    • /
    • 1996
  • We have implemented a fast pressure control system for the transport chamber of a high vacuum cluster tool for advance semiconductor fabrication and evaluated its performance. To overcome the typically slow response of mass flow controllers, the modified experimental method is used very effectively to optimize the pressure control procedure. We successfully obtained quite fast pressure control by adjusting the starting time and eht tuning constants by the Ziegler-Nichols method. In the transport pressure $10\times 10^{-5}$ torr, actual pressure control starts from 4 sec after an initial gas load of 2.1 sccm. As a result, optimum conditions for the tuning constants are the rise rate of 0.02 torr/sec, the lag time of 0.15 sec, and the sampling period of 0.5 sec. Then the settling time is about 9 sec within about $\pm$0.5% for the referenced value. This settling time is enhanced above 75 percents in comparison with conventional experimental method. To account for the experimental effects observed, a theoretical model was developed. This experimental result has a tendency to fit with the theoretical result of $\omega$=-1.0.

  • PDF

A Study on Buzz Margin Control in Supersonic Engine Intake using PID Controller (PID 제어기를 이용한 초음속 엔진 흡입구의 버즈마진 제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Kang, Myoung-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-92
    • /
    • 2009
  • Total pressure recovery ratio in intake is crucial factor to the operational characteristics of supersonic propulsion system because it does not compress inlet air mechanically by compressor, but does compress inlet air by ram compression. As the result of that the dynamic characteristic analysis of engine was performed before the controller was designed, it could be ascertained when the AoA of flight vehicle increases, the buzz margin decreases so that the shock wave produced outside intake in the specified area according to flight operation's characteristics. Therefore the PID control algorithm was designed to be controlled buzz margin that the characteristic of shock wave could meet the requirement of performance in intake. The PID controller was designed that the buzz margin value is being positive number using the control variables; fuel flow and nozzle throat area.

  • PDF

On the Introduction of the Internal Metering Policy in COSMOS (서울시 실시간 신호제어시스템(COSMOS)내 내부미터링 제어전략 도입 방안)

  • 이승환;이상수;이성호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.79-90
    • /
    • 2003
  • Internal metering policy(IMP) is a control strategy to improve the quality of traffic flow within a network by avoiding queue spillback or intersection blockage. It is a more aggressive control strategy than the current control strategy employed in COSMOS. A preliminary study was made to incorporate the IMP logic within the COSMOS system to improve its' functionality at oversaturated conditions. From the study results, a set of guideline for real implementation was recommended : traffic conditions, detector configurations, and control procedures, etc. A simulation study was performed to evaluate the effectiveness of the proposed guidelines. It was shown that the occurrence of queue spillback was minimized. and overall network performance was also improved by applying IMP logic as compared to COSMOS control onl.

Effect and Control of the Sediment in the Combined Sewer on CSOs (합류식 하수관거내 퇴적물이 CSOs에 미치는 영향 및 제어방안)

  • Lim, Bongsu;Kim, Doyoung;Lee, Kuangchun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • This study is selected two points of combined sewer that occurred Fish Kill after first flush, that analyzed generation of pollutants and stream runoff generation of combined sewer overflows (CSOs) as fine weather and rainfall. In addition, this study was to analyze the relationship between CSOs and sediments, to propose measures to reduce the sediment relevant with CSOs and rainfall runoff from entering sewage treatment plants and measures for discharged directly into streams when indicate relatively good water quality after overflow. Sediments in combined sewer system was discharged about 50~80% as overflows during rainfall and we can reduce the amount of the CSOs at least 50% or more if the sewer does not exist in the sediments because of the amount of discharge about the amount of intercept has been investigated by 3~5 times. Because of velocity at sediment interval in sewer is very low, sewage velocity of about 3~5 times as much as it can increase the amount of sediment can be reduced if the separation wall is installed. Effective control of BOD overflow load is respectively 77.5%, 75.8% at first point, second point by the separation wall is installed. Drainage area greater than area in this study or many combined sewer overflows region is increased the more effective control of separation wall. Turbidity to measure changes in water quality of overflows can be used as an factor to control the intercept flows because the intercept flows(3Q) after the first flush has lowered removal efficiency and increases the operational load of sewage treatment plants. Sewage water quality after a overflow when the reasonable turbidity was measured at this point flows to excluded intercept flow(1Q) can be discharged to stream.

Comparison for Glomerular Filtration Rate in Gamma Camera Systems Using Dynamic Renal Phantom System (동적신장팬텀시스템 개발에 따른 장비별 사구체여과율의 비교)

  • Kang, Chun Goo;Park, Hoon-Hee;Oh, Shin Hyun;Lee, Han Wool;Kim, Jung Yul;Oh, Joo Yung;Lee, Ju Young;Kim, Jae Sam;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.3-9
    • /
    • 2013
  • Purpose: Currently commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desire to evaluate the usefulness of nuclear medicine imaging. Materials and Methods: The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc-pertechnate$. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn ten times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Results: Under the same conditions infusion rate 40 mL/min fixed to adjust the pressure of the pump when the radiopharmaceuticals between 2-3 minutes in the most integrated in the kidney phantom was excreted inthe bladder. Glomerular filtration rate (GFR), respectively, by each device SYMBIA 1,091 mL/min, FORTE 1,232 mL/min, ARGUS 1,264 mL/min, INFINIA 1,302 mL/min in that there isno statistically significant difference was found, Tmax values and T1/2 values stars from all equipment with no statistically significant difference was found. CV values of the coefficient of variation less than 5% was found to be repeatable, and to 2.67% of the lowest SYMBIA appeared, INFINIA was the highest in the 4.86%. Conclusion: Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

  • PDF

The Authentication Model which Utilized Tokenless OTP (Tokenless OTP를 활용한 인증 모델)

  • Kim, Ki-Hwan;Park, Dea-Woo
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.205-214
    • /
    • 2006
  • Is need Remote Access through internet for business of Ubiquitous Computing age, and apply OTP for confidentiality about inputed ID and Password, network security of integrity. Current OTP must be possessing hardware or Token, and there is limitation in security. Install a Snooping tool to OTP network in this treatise, and because using Cain, enforce ARP Cache Poisoning attack and confirm limitation by Snooping about user password. Wish to propose new system that can apply Tokenless OTP by new security way, and secure confidentiality and integrity. Do test for access control inflecting Tokenless OTP at Remote Access from outside. and could worm and do interface control with certification system in hundred. Even if encounter hacking at certification process, thing that connection is impossible without pin number that only user knows confirmed. Because becoming defense about outward flow and misuse and hacking of password when apply this result Tokenless OTP, solidify security, and evaluated by security system that heighten safety.

  • PDF

ST-Segment Analysis of ECG Using Polynomial Approximation (다항식 근사를 이용한 심전도의 ST-Segment 분석)

  • Jeong, Gu-Young;Yu, Kee-Ho;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.691-697
    • /
    • 2002
  • Myocardial ischemia is a disorder of cardiac function caused by insuficient blood flow to the muscle tissue of the heart. We can diagnose myocardial ischemia by observing the change of ST-segment, but this change is temporary. Our primary purpose is to detect the temporary change of the 57-segment automatically In the signal processing, the wavelet transform decomposes the ECG(electrocardiogram) signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex more easily. Amplitude comparison method is adopted to detect QRS complex. Reducing the effect of noise to the minimum, we grouped ECG by 5 data and compared the amplitude of maximum value. To recognize the ECG .signal pattern, we adopted the polynomial approximation partially and statistical method. The polynomial approximation makes possible to compare some ECG signal with different frequency and sampling period. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. After removing the distorted ECG by calculating the difference between the orignal ECG and the approximated ECG for polynomial, we compared the approximated ECG pattern with the database, and we detected and classified abnormality of ECG.

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.

Increasing Cell Concentration by the Automatic Addition of Glucose, Ammonium and Phosphate in the Cultivation of a Baker′s Yeast in Alcohol Distillery Wastewater (알콜증류폐액을 이용한 빵효모배양에서 포도당, 암모늄 및 인산의 자동첨가에 의한 증균)

  • 이형춘
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.197-201
    • /
    • 2003
  • Automatic addition of glucose, ammonium and phosphate to alcohol distillery wastewater and their control at low concentrations have been carried increase the cell concentration of a baker's yeast cultivated in the wastewater. Glucose was automatically added using dissolved oxygen as the control parameter, and maintained below 300 mg/L. Ammonium was automatically added by a pH-stat method and maintained in the low range of 12.6~17.4 mM. An automated FIA system, which used an ascorbic acid-based method was developed for the automatic analysis nad addition of phosphate. With this system, the phosphate concentration was succesfully analysed and controlled afrer 19.4 hr in the range 23.3~43.4 mg/L. The cell concentration was increased by 33.0-fold by the addition of these three nutrients. The overall specific growth rate of the yeast was 0.19 $hr^{-1}$.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.