• Title/Summary/Keyword: Flow Control System

Search Result 3,071, Processing Time 0.033 seconds

Video Based Tail-Lights Status Recognition Algorithm (영상기반 차량 후미등 상태 인식 알고리즘)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Do, Jin-Kyu;Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1443-1449
    • /
    • 2013
  • Automatic detection of vehicles in front is an integral component of many advanced driver-assistance system, such as collision mitigation, automatic cruise control, and automatic head-lamp dimming. Regardless day and night, tail-lights play an important role in vehicle detecting and status recognizing of driving in front. However, some drivers do not know the status of the tail-lights of vehicles. Thus, it is required for drivers to inform status of tail-lights automatically. In this paper, a recognition method of status of tail-lights based on video processing and recognition technology is proposed. Background estimation, optical flow and Euclidean distance is used to detect vehicles entering tollgate. Then saliency map is used to detect tail-lights and recognize their status in the Lab color coordinates. As results of experiments of using tollgate videos, it is shown that the proposed method can be used to inform status of tail-lights.

Study on Evaluation of Local Cooling Performance using Piezoelectric and Thermoelectric Modules (압전소자와 열전소자를 이용한 국소부 냉각성능 평가에 관한 연구)

  • Oh, Hoo-suk;Choi, Byung-Hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.478-483
    • /
    • 2017
  • This paper investigated experimentally the performance of cooling systems using thermoelectric and piezoelectric modules for local heating and temperature control, such as a handheld electronic devices. The temperature distribution of the cooling region using thermoelectric modules was measured when the piezoelectric module was and was not with a frequency of 80Hz and 110Hz. The coefficients of performance were also calculated by the temperature results, and the thermo-flow phenomena in the cold region was visualized under the same conditions. The results of the temperature distribution measurements and the coefficient of performance showed that the cooling performance of the cooling system using thermoelectric modules can be improved by operating the piezoelectric module. In addition, when the piezoelectric module was operated based on the result of visualization in the cold region, which was formed by thermoelectric modules, the performance thermoelectric cooling was improved by the thermo-flow formed in the entire cold region as the forced convection of vibration was generated on the local cold region by the piezoelectric module.

Deletion of adipose triglyceride lipase abolishes blood flow increase after β3-adrenergic stimulation in visceral adipose tissue of mice

  • Lee, Hye-Jin;Jin, Bo-Yeong;Park, Mi-Rae;Seo, Kwan Sik;Jeong, Yong Taek;Choi, Sang-Hyun;Kim, Dong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • Dynamic changes in adipose tissue blood flow (ATBF) with nutritional status play a role in the regulation of metabolic and endocrine functions. Activation of the sympathetic nervous system via β-adrenergic receptors (β-AR) contributes to the control of postprandial enhancement of ATBF. Herein, we sought to identify the role of each β-AR subtype in the regulation of ATBF in mice. We monitored the changes in visceral epididymal ATBF (VAT BF), induced by local infusion of dobutamine, salbutamol, and CL316,243 (a selective β1-, β2-, and β3-AR agonist, respectively) into VAT of lean CD-1 mice and global adipose triglyceride lipase (ATGL) knockout (KO) mice, using laser Doppler flowmetry. Administration of CL316,243, known to promote lipolysis in adipocytes, significantly increased VAT BF of CD-1 mice to a greater extent compared to that of the vehicle, whereas administration of dobutamine or salbutamol did not produce significant differences in VAT BF. The increase in VAT BF induced by β3-AR stimulation disappeared in ATGL KO mice as opposed to their wild-type (WT) littermates, implying a role of ATGL-mediated lipolysis in the regulation of VAT BF. Different vascular reactivities occurred despite no significant differences in vessel density and adiposity between the groups. Additionally, the expression levels of the angiogenesis-related genes were significantly higher in VAT of ATGL KO mice than in that of WT, implicating an association of ATBF responsiveness with angiogenic activity in VAT. Our findings suggest a potential role of β3-AR signaling in the regulation of VAT BF via ATGL-mediated lipolysis in mice.

A study on coil temperature bariation in 75% hydrogen batch annealing furnace (75% 수소 BATCH 소둔시에서의 코일 온도변화에 관한 연구)

  • Jeon, Eon-Chan;Kim, Soon-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 1994
  • A Cold spot temperature control system for the batch annealing furnace has been estabilished in order to reduce energy consumption to improve productivity and stabilize the propertics of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, variation of coil cold spot temperature with time during heating and actual temperature measurements at mid-width of each coil during heating and actual temperature measurements at mid-width of each coil during soaking. The results of the tempaeature variation effect on the batch annealing are as follows. 1) Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas, and annealing cycle time is reduced to 2.7 times. 2) In case of short time healing, the slowest heating part is the center of B coil, in case of long time heating, the low temperature point moves from the center of coil to inside coil. And the temperature in this part is higher than other parts when cooling. When finished heating, the cold spot is located 1/3 of coil inside in case of HNx atmospheric gas. But center of coil in case of Ax atmospheric gas. 3) The outside of top coil is the highest temperature point when heating, which becomes the lowest temperature point when cooling. So, this point becomes high temperature zone at heating and low temperature zone at cooling, It has relation according to atmospheric gas component and flow rate. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1214mm width coil must be 2.5 hours longer than that of 914mm width coil for the same ciol weight. 5) Annealing cycle time with Ax atmospheric gas is extended 1 hour in of slow cooling during 5 hours in order to avoid rapid cooling.

  • PDF

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

A Study on the Field Application of Automatic Grouting System (자동화 그라우팅 기법의 현장적용성에 관한 연구)

  • Do, Jongnam;Park, Junghwan;Choi, Dongchan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • In Korea, grouting has been mostly designed and constructed by experiences without expert knowledge and theoretical study. So there are a lot of problems related to the quality and safty of grouting. Therefor, in this paper the quality management skills and method were discussed through out by using the auto-grouting method and field test of grouting for the construction. Through the limit water injection test of the soil, it make the optimum injection pressure and injection speed of grouting, and through the lugeon test of the rock, it make assess the permeability of before and after grouting. In order to prevent the hydraulic fracture of soil and break away from the grouts if it apply four kinds of mode of grouting stop criteria, injection effects can be improved. From the above characteristcs designers evalute the fitness values of injection pressure(p), injection speed(q) and grouting penetration time(t). So far, to record and manage pressure(p) and speed(q) of grouting autographic devices such as intergation flow-meter usually record data in a roll of paper. Intergration flow-meter can record grouting flow quantity exactly, but the recorded pressures differ from the any basis such as intitial, intermediate and final point. Therefore, it has been argued that is a need of reliable method to describe the connection between the pressure recorded by an intergration flow-meter and the special properties of the grouting target ground. auto-grouting method can describe the reliable connection between the grouting pressure and the special properties of the grouting target ground. So, in this paper by using auto-grouting method, it is expected that to secure basis of quality control techniques construction.

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Comparison of Section Speed Enforcement Zone and Comparison Zone on Traffic Flow Characteristics under Free-flow Conditions in Expressways (자유류 상태에서 고속도로 구간과속단속구간 및 대조구간 간의 교통류 특성 비교)

  • Shim, Jisup;Jang, Kitae;Chung, Sung Bong;Park, Shin Hyoung
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.182-191
    • /
    • 2015
  • The Korean government introduced an automated speed enforcement system (ASES), which uses traffic enforcement cameras, to counteract safety issues that are caused by speeding. As the information of the traffic enforcement camera locations is provided to the drivers via navigation systems and mobile applications in a timely manner, drivers can avoid enforcement by momentarily diminishing their speeds only near the camera locations. To prevent drivers' evasional behavior and improve the effectiveness of ASES, section control, which enforces speeding vehicles by measuring their average travel speeds over a stretch of road and checking against the speed limit, has been recently implemented. In this study, Section Speed Enforcement Zone and Comparison Zone are compared in terms of traffic stream characteristics under free flow conditions. To this end, loop detector data were obtained from the three study sites and analyzed. The study results demonstrated that drivers maintain their speeds below the speed limit over the enforcement section with a lower variance of speeds.

A Study on the Conditions of Injection Pressurization in the Smoke-Control Zone II. Analysis of the Conditions for Closing Force of Fire Door with Variation of Angular Velocity (제연구역 방화문의 각속도 변화와 폐쇄 조건 분석)

  • Lee, Chang-Wook;Kim, Hong-Jin;Choi, Young-Ki;Youm, Moon Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.6-10
    • /
    • 2013
  • This study aims to construct the performance data for smoke-control zone and realize the safety of injection and pressurization room which is composed of supply air pressure zone, vestibule, smoke-control zone and stairwell. To obtain this, smoke-control system and the device of the opening-closing force of fire door are manufactured. This subject is the analysis of the closing force, angular velocity and fire door size in the case of fixed volume flow rate. Based on the results, closing force increased as fire door size and closing angular velocity increases. Also, it is remark that there exists a critical angular velocity, which maintains constant maximum closing force even though the angular velocity increases more.

A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network (인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.