• Title/Summary/Keyword: Flow Control Forming

Search Result 105, Processing Time 0.026 seconds

A Study on Buckling and plastic Instable Flow with Kinematic Hardening (이동 경화를 고려한 좌굴 및 소성 불안정 유동에 관한 연구)

  • 황두순
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.98-101
    • /
    • 1999
  • The plastic instable flow phenomenon happens in practical forming process I. e. upsetting backward extrusion piercing indentation. And also it is difficult to control precisely the shape and dimensions of forming process. It is found that instabilities of the process are mainly connected with imperfection in the lubrication billet eccentricity inclined punch alignment. In view of the direct relationship between instable material flow and quality defects of the products and it is for better control of forming operation we should necessarily find out their phenomena. In this study we used the friction disturbance due to inclined punch angle and introduced the method considering kinematic hardening effect Analysis of upset forging is carried out using the rigid plastic FEM and slab method with eccentricity.

  • PDF

A Study on the Dehumidification Control to Prevent Condensation for Radiant Floor Cooling (바닥복사냉방의 결로방지를 위한 제습제어에 관한 연구)

  • 김용이;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • In the forming of an integrated system of radiant floor cooling and dehumidifying, chilled coil can be used for cooling and dehumidification. Therefore, it is necessary to find the efficient control method which can eliminates latent load efficiently. This study has been conducted to find this method by dividing the dehumidification system into 3 types according to the control variables and analyzing characteristics of each system. To prevent the floor surface condensation, the amount of condensation can be manipulated by water temperatures, water flow rates in chilled coil, and air flow rates passing by it. So dehumidification system control can be divided into constant air flow control and variable air flow control. Regarding dehumidification control, variable air flow control, which eliminates latent load rather than sensible load, is preferable to constant flow control.

Development of Dry Forming Mold for the Feasibility Study of Dry Forming of Paper (건식초지기술의 가능성 평가를 위한 건식초지기 개발)

  • Kim, Jong-Min;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.1-8
    • /
    • 2007
  • To examine the feasibility of dry forming technology for papermaking, a dry forming mold (DFM) was developed and evaluated. Main fanning section of DFM was a cylindrical tube, and at the top of the mold a stirring equipment was placed to disperse dry fibers. These fibers were screened using a hole type screen plate placed just under the stirring equipment and dropped freely on the fanning wire located 0.9 m below of the screen plate to form a dry fiber pad. The vertical and horizontal velocity of air flow in the forming cylinder were evaluated and analyzed to find the most effective method of air flow control in the cylinder. Humidification and pressing conditions to obtain a decent dry fanned papers were examined. Results showed dry fanned papers can be prepared with this dry forming mold. And this mold can be used to examine the effect of the papermaking process factors including pressing pressure, drying temperature, humidification on sheet quality of dry formed papers.

FORMABILITY OF COMBINED STRETCHING PROCESSES WITH SIMULTANEOUS COMPRESSION

  • Muranaka T.;Goto Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.193-197
    • /
    • 2003
  • In order to restrain the local necking during stretching of sheet metals, the combined stretching processes with simultaneous compression are proposed. The combined stretching tests with two types of compression to top of the cup were carried out using the pure aluminum sheets; (1) stroke control loading process and (2) pinpoint loading process. It was clarified that the metal flow in the cross-section of the cup is affected significantly both by the magnitude of load and the stroke in the compression process. It was also found that the local necking can be restrained effectively by the metal flow from center of the cup and therefore the forming limit is improved.

  • PDF

Particle Flow Analysis of Grain-Size Controlled Rheology Materials (결정립제어 레오로지 소재의 입자유동 해석)

  • 김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.774-777
    • /
    • 2004
  • A rheology casting technology has some advantages compared with conventional forming processes such as die casting, squeeze casting and hot/cold forming. The liquid segregation is important on mechanical properties of materials using rheology casting. In this study, so, molecular dynamics simulations were performed for the control of liquid segregation. Because the dynamics of fluid flow about nano-scaled materials is completely different from continuum, molecular dynamics simulations were used. The behavior of particles was far from the truth according to boundary conditions in simple flow. But various movement of particles appear at two or more molecular simulations.

  • PDF

Effects of Initial Slug Design on the Earring of a Rectangular Battery Case During Impact Extrusion (충격압출 공정에서 초기 슬러그 디자인이 사각 배터리 케이스의 이어링에 미치는 영향 분석)

  • Lim, J. H.;Choi, S.;Chung, W. J.;Shin, J. H.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.425-430
    • /
    • 2015
  • In the current paper, the effects of initial slug design on the earring of an Al rectangular battery case manufactured by impact extrusion were studied. During impact extrusion, non-uniform metal flow between the long and the short sides of the battery case leads to earring, which is subsequently trimmed. Process parameters such as friction, aspect ratio of the battery case, the die shape and the forming temperature tend to induce earring because they cause greater non-uniform metal flow. Large aspect ratio of the battery case and high friction between slug and die can greatly affect the earring of a rectangular battery case. To make a rectangular battery case without earring, it is necessary to control metal flow uniformly during impact extrusion. One of the ways to reduce the earring is to control the metal flow of slug at the initial upsetting stage. To analyze the effects of the initial slug design on earring, FE analysis was conducted using DEFORM 3D. Two types of initial slug designs were evaluated where volume was removed along either the width or thickness directions. The results show that the initial slug design can be effective in adjusting the uniformity of metal flow.

Effect of Bead Surface Treatments and Bead Shapes on the Drawing and Friction Characteristics in Drawbead Forming of Sheet Metal (판재의 드로우비드 성형시 비드표면처리와 비드형상이 인출 및 마찰특성에 미치는 효과)

  • Lee, Dong-Hwal;Ryu, Jong-Soo;Chung, Woo-Chang;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • In sheet metal forming, drawbeads are often used to control uneven material flow, which may cause defects such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting of the drawbead force is one of the most important parameters in sheet forming process control. Therefore in this study, drawbead test was performed at various bead surface treatment conditions to clarify the frictional characteristics between sheet and drawbead. Furthermore, the differences in drawing force between circular and rectangular shape beads have also been measured to estimate the effectiveness of bead shape on the material flow control. The results show that drawing and friction characteristic were strongly influenced by surface treatments of bead and bead shapes.

A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method (강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구)

  • 윤종훈;김낙수;임용택;이준두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF

Elastic-plastic Finite Element Analysis of Drawbead Forming for Evaluation of Equivalent Boundary Conditions in Sheet Metal Forming - Part I : Evaluation (박판 성형공정에서의 등가 경계조건 계산을 위한 드로우비드 성형의 탄소성 유한요소 해석 - PartI: 등가 경계조건 계산)

  • Park, J.S.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.503-512
    • /
    • 2002
  • The drawbead is used to control material flow into the die during the binder wrap process and the stamping process in the sheet metal forming process. Since the dimension of drawbead is relatively small in comparison with the typical dimensions, it is difficult to include drawbeads in finite element analysis of the sheet metal forming process. It is because the mesh system has to be fine enough to describe the drawbead and the computation time is drastically increased. In this paper, simulation of drawbead forming has been carried out to obtain the equivalent boundary conditions in the binder wrap process and the stamping process. In order to investigate the effect of various die geometries, parameter studies are performed with the variation of parameters such as the blank length, the drawbead depth, the drawbead radius, the inclination of die and the friction coefficient.

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF