• Title/Summary/Keyword: Flow Calculation

Search Result 1,944, Processing Time 0.033 seconds

The Noise Analysis of Ship HVAC System Based on GUI Modeling (GUI Modeling을 기반으로한 선박의 HVAC System 소음 해석)

  • 이철원;김노성;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1300-1305
    • /
    • 2001
  • One of the main noise sources in cabin onboard ships is HVAC system. Up to now, the HVAC system designer manually calculates the HVAC system noise, or uses the program that is generally based on text user interface. In such a case, it is difficult to use the program and also to obtain the flow induced noise. In this study, the HVAC noise analysis program has been developed, which is based on GUI user interface that include 3.D modelling and model modification modules. For calculation of the insertion loss of HVAC system elements, NEBB experimental data and plane wave theory are used. And in order to obtain the flow rate information in each HVAC elements which is used to calculate the flow induced noise calculation, Global Converging Newton-Rapson Method is used.

  • PDF

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

A study on flow around a passenger vehicle model (승용차 모형주위의 유동에 관한 연구)

  • 장성원;유정열;이택식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.53-62
    • /
    • 1990
  • A wind tunnel experiment for the flow around a 1/5 scale passenger vehicle model has been carried out. A 5-hole Pitot tube is used for measuring velocity distributions around the model and a scanivalve with 48 ports is used for measuring surface pressure distribution at various Reynolds numbers. In order to observe the flow on the surface and in the wake region, a flow visualization experiment has been performed using wool tuft with and without paper cones. In addition, a 2-dimensional viscous calculation considering only the mid-plane section of the model has been performed. A complex wake structure in the immediate rear of the model has been confirmed. The distributions of the surface pressure coefficient are not sensitively dependent on the Reynolds Number. In the first half of the model, they do not seem to vary form section to section. However, in the second half, they do vary from section to section, especially at the bottom surface, which indicates that the cross flow vortex is more affected by the bottom surface than the top surface. The qualitative agreement of the measured and calculated velocity field also explains the usefulness of the 2-dimensional calculation in the limited sense.

  • PDF

The algorithm of the load flow problem for integrated distributed generation network (분산전원의 특성을 고려한 조류계산의 새로운 알고리즘 고찰)

  • Nguyen, Dinh Hung;Nguyen, Minh Y.;Nguyen, Van Thang;Kim, Tae-Won;Kim, Kern-Joong;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.168-169
    • /
    • 2011
  • The aim of this paper is to present a new algorithm for the load flow problem using modified Newton-Raphson (NR) iteration method and a approach to derive a simple formula to compensate the reactive power at some heavy load bus. The reactive power source used in this research is the DG which is adjacent to the heavy load. Phenomena of low voltages may cause the load flow calculation process to diverge. In modified NR method, low voltages will be detected and corrected before the next iteration. Therefore, the results of load flow calculation process satisfy the voltage constraint i.e. higher than the lower voltage limit or higher than the critical voltage in case the conventional load flow diverges. Linearizing the power network using PTDFs is a simple method with accepted errors. A new value of voltage at the DG terminal is computed in terms of the voltage deviation of load buses. In this approach, solving the entire system is unnecessary.

  • PDF

Analysis of Non-Darcy Flour in Tide Embankment (호안제체에서 Non-Darcy 흐름해석)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • The simulation results using i- V relationship of non-Darcy flow through tide embankment by Li et al.(1998) agree well to the observed data. The use of i- V relationship is applicable to the engineering practice and the correct input of porosity is necessary. The non-Darcy flow based on the pipe flow and Taylor's definition for mean hydraulics radius in rockfill material is applicable to the block and caisson materials. The correct calculation of flow through tide embankment enables the accurate calculation of velocity at final closing gap and the prediction of inner water level after tide embankment construction as well.

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.

The Aerodynamic Analysis of Pantograph of the Next Generation High Speed Train (차세대 고속철도 판토그래프의 공력특성 해석)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Yoon, S.H.;Kwon, H.B.;Park, C.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.362-367
    • /
    • 2011
  • The aerodynamic performance of the pantograph of the next generation high sped train is analyzed. The calculation of the flow around pantograph is carried cut by FLUENT; by the steady state flow calculation with ${\kappa}-{\omega}$ SST turbulence model, the lift force of the pantograph is computed. For the verification of the numerical schemes am grid systems, flow calculations are performed with the pantograph shape which was used at the experiments performed at Railway Technical Research Institute (RTRI) in Japan. Then, the difference of lift force between numerical am experimental results is about 10%. Therefore, selected numerical schemes and the current grid system is adequate for the analysis am prediction of the aerodynamic performance of panthograph system. Based on these numerical schemes am grid system, the flow around pantograph of the next generation high sped train is calculated and the lift force of the pantograph is predicted; the lift force of the pantograph is about 146N.

  • PDF

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

Application of peak load for industrial water treatment plant design (공업용수 정수장 설계시 첨두부하 적용방안)

  • Kim, Jinkeun;Lee, Heenam;Kim, Dooil;Koo, Jayong;Hyun, Inhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.225-231
    • /
    • 2016
  • Peak load rate(i.e., maximum daily flow/average daily flow) has not been considered for industrial water demand planning in Korea to date, while area unit method based on average daily flow has been applied to decide capacity of industrial water treatment plants(WTPs). Designers of industrial WTPs has assumed that peak load would not exist if operation rate of factories in industrial sites were close to 100%. However, peak load rates were calculated as 1.10~2.53 based on daily water flow from 2009 to 2014 for 9 industrial WTPs which have been operated more than 9 years(9-38 years). Furthermore, average operation rates of 9 industrial WTPs was less than 70% which means current area unit method has tendency to overestimate water demand. Therefore, it is not reasonable to consider peak load for the calculation of water demand under current area unit method application to prevent overestimation. However, for the precise future industrial water demand calculation more precise data gathering for average daily flow and consideration of peak load rate are recommended.