• Title/Summary/Keyword: Flow Blockage Detection System

Search Result 5, Processing Time 0.024 seconds

ESTABLISHMENT OF A NEURAL NETWORK MODEL FOR DETECTING A PARTIAL FLOW BLOCKAGE IN AN ASSEMBLY OF A LIQUID METAL REACTOR

  • Seong, Seung-Hwan;Jeong, Hae-Yong;Hur, Seop;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • A partial flow blockage in an assembly of a liquid metal reactor could result in a cooling deficiency of the core. To develop a partial blockage detection system, we have studied the changes of the temperature fluctuation characteristics in the upper plenum according to changes of the t10w blockage conditions in an assembly. We analyzed the temperature fluctuation in the upper plenum with the Large Eddy Simulation (LES) turbulence model in the CFX code and evaluated its statistical parameters. Based on the results of the statistical analyses, we developed a neural network model for detecting a partial flow blockage in an assembly. The neural network model can retrieve the size and the location of a flow blockage in an assembly from a change of the root mean square, the standard deviation, and the skewness in the temperature fluctuation data. The neural network model was found to be a possible alternative by which to identify a flow blockage in an assembly of a liquid metal reactor through learning and validating various flow blockage conditions.

Design of Hardward Diagnostic System for Reactor Internal Structures Using Neutron Noise (중성자 신호이용 원자로 내부 구조물 감시시스템 하드웨어 설계)

  • Park, Jong-Beom;Park, Jin-Ho;Hwang, Choong-Hwan;Kim, Soo-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2166-2168
    • /
    • 2001
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics. The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed design of hardware diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

Composition of Diagnostic System for Reactor Internal Structures Using Neutron Noise (중성자 신호이용 원자로 내부 구조물 감시시스템 구성)

  • Park, Jong-Beom;Kim, Jong-Bong;Park, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2252-2254
    • /
    • 2002
  • The Reactor internal structures which consist of many complex components are subjected to flow-induced vibration due to high temperature and pressure in Reactor coolant system. The above flow-induced vibration causes degradation of structural integrity of the Reactor and may result in loosing mechanical binding component which might impact other equipment and component or cause flow blockage. It is important to analyze reactor noise signal for the early detection of potential problem or failure in order to diagnosis reactor integrity in the point of view of safety and plant economics. Detailed composition of diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

Characterization of Chemical Sludge inside Pipes Using Torsional Guided Waves

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2014
  • A new method is presented that uses guided wave techniques for sludge and blockage detection in long-range pipelines. Existing techniques have the limitations that the sludge position needs to be known a priori and the area to be inspected needs to be accessible. A novel guided wave technique has been developed that allow the sludge or blockages to be detected remotely without the need to access the specific location where the pipe is blocked, nor to open the pipe. The technique measures the reflection of guided waves by sludge that can be used to accurately locate the blocked region. The effectiveness of the proposed technique is demonstrated and confirmed by experimental measurements.