• 제목/요약/키워드: Flory-Huggins lattice theory

검색결과 7건 처리시간 0.022초

이항분포의 특정 상호작용을 갖는 이성분 용액에서의 부분혼합도 (Partial Miscibility of Binary Solution with Specific Interaction of Binomial Distribution)

  • 정해영
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.528-534
    • /
    • 2014
  • 어떤 이성분계용액에서는 상한임계용액온도와 하한임계용액온도가 동시에 나타나는 원형모양의 온도-조성 상도를 보인다. 이러한 현상은 분자간 특정상호작용이 존재하는 경우 나타나는 것으로 알려져 있다. 특정상호작용을 묘사하는 방법에는 여러 가지가 있다. 본 연구에서는 특정상호작용의 총수가 이항분포에 따라 분포한다고 가정하였다. 이 경우 특정상호작용을 Regular 용액이론, Quasichemical 이론 그리고 Flory-Huggins 격자이론에 적용하였을 때 원형모양의 온도-조성 상도를 보이는 경우에 대한 정확한 수학적인 조건을 유도하였다. 그리고 매개변수들이 온도-조성상도에 미치는 영향을 조사하였고, 물-니코틴에 대한 온도-조성상도를 계산하여 실험값과 비교하여 보았다.

Theoretical Estimation of Partial Miscibilities by the Extended Flory-Huggins Lattice Theory

  • Jung, Hae-Young;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권3호
    • /
    • pp.132-135
    • /
    • 1985
  • Four types of the phase diagrams indicating the partial miscibilities in polymer-polymer or polymer-solvent systems have been explained in terms of the extended Flory-Huggins lattice theory. In this article, the term $kT_{\chi}$ in the theory is expressed as a function of temperature. Using such $a_{\chi}$-parameter, the simplest forms of geometrical conditions are derived for each type of the four partial miscibilities in polymer systems. The calculated partial miscibilities are in good agreement with the experiment.

Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model

  • Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.2001-2006
    • /
    • 2009
  • Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.

확장된 Flory-Huggins의 격자이론에 의해 예측되는 액체 이성분계의 부분혼화도에 대한 고찰 (Study of the Partial Miscibilities of Binary Liquid-liquid Systems Predicted by the Extended Flory-Huggins Lattice Theory)

  • 정해영
    • 대한화학회지
    • /
    • 제31권6호
    • /
    • pp.481-485
    • /
    • 1987
  • 확장된 Flory-Huggins의 격자이론에 의해 예측될 수 있는 액체 이성분계의 여러 부분혼화도를 제시하였으며, 각 경우에 있어서의 수학적 조건를 구하였다. 그리고, 그 이론을 사용하여 물-2-부탄올계에서 나타나는 비정상적인 부분혼화도가 존재할 수 있음을 보였다.

  • PDF

A Theory of Polymer Adsorption from Solution

  • Lee, Woong-Ki;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 1987
  • A statistical thermodynamical treatment for polymer adsorption from solution is presented. The canonical partition function for the polymer solution in the presence of a surface or an impermeable interface is formulated on the basis of usual quasi-crystalline lattice model, Bragg-Williams approximation of random mixing, and Pak's simple treatment of liquid. The present theory gives the surface excess ${\Gamma}_{exc}$ and the surface coverage ${\phi}^s_2$ of the polymer as a function of the chain length x, the Flory-Huggins parameter x, the adsorption energy parameter $x_s$, and polymer concentration $v_2$. Present theory is also applicable to the calculation of interfacial tension of polymer solution against water. For the idealized flexible polymer, interfacial tensions according to our theory fit good to the experimental data to the agreeable degrees.

Polymer Bland에서의 상평형에 관한 연구 (Study on the Phase Diagram for the Polymer Bland)

  • 김상민
    • 한국포장학회지
    • /
    • 제9권1호
    • /
    • pp.19-24
    • /
    • 2003
  • We study on the phase diagram of the polymer blend. For this purpose, one PS (polystyrene) and two PI(polyisoprene) were employed whose molecular weights were low enough to make the experimental determinations possible. The weight-average molecular weight(Mw) of PS was 2514, and Mws of two PIs were 2700. Interaction energy density (IED) of the Flory-Huggins lattice theory was defined as a function of temperature and composition, and the consequent equations for the binodal, and critical points were derived. By fitting the experimental binodal points to the derived binodal curve with a nonlinear regression method, the expression for the IED was determined. And the expression for the IED obtained from this study was compared with those reported in the literatures. Also were discussed the importance of accuracy in the expression the IED, and the IED's dependency on the temperature, composition and molecular weights.

  • PDF

Polymer Adsorption at the Oil-Water Interface

  • Lee, Woong-Ki;Pak, Hyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권5호
    • /
    • pp.398-403
    • /
    • 1987
  • A general theory of polymer adsorption at a semi-permeable oil-water interface of the biphasic solution is presented. The configurational factor of the solution in the presence of the semi-open boundary at the interface is evaluated by the quasicrystalline lattice model. The present theory gives the feature of the bulk concentration equilibria between oil-water subsystems and the surface excesses of ${\Gamma}^{\alpha}$ and ${\Gamma}^\{beta}$ of the polymer segments as a function of the degree of polymerization $\gamma$, the Flory-Huggins parameter in $\beta$-phase $x_{\rho}^{{\beta}_{\rho}}$, the differential adsorption energy parameter in $\beta$-phase $x_{\sigma}^{{\beta}_{\rho}}$, the differential interaction energy parameter ${\Delta}x_{\rho}$ and the bulk concentration of the polymer in ${\beta}-phase ${\varphi}_2^{{\beta(*)}_2}$. From our numerical results, the characteristics of ${\Gamma}^{\alpha}$ are shown to be significantly different from those of ${\Gamma}^{\beta}$ in the case of high polymers, and this would be the most apparent feature of the adsorption behavior of the polymer at a semi-permeable oil-water interface, which is sensitively dependent on ${\Delta}x_{\rho}$ and r.