• Title/Summary/Keyword: Floor concrete Thickness

Search Result 54, Processing Time 0.025 seconds

Parametric study on the structural behaviour of composite slim floors with hollow-core slabs

  • Spavier, Patricia T.S.;Kataoka, Marcela N.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.497-506
    • /
    • 2021
  • Steel-concrete composite structures and precast concrete elements have a common prefabrication process and allow fast construction. The use of hollow-core slabs associated with composite floors can be advantageous. However, there are few studies on the subject, impeding the application of such systems. In this paper, a numerical model representing the considered system using the FE (finite element)-based software DIANA is developed. The results of an experimental test were also presented in Souza (2016) and were used to validate the model. Comparisons between the numerical and test results were performed in terms of the load versus displacement, load versus slip, and load versus strain curves, showing satisfactory agreement. In addition, a wide parametric study was performed, evaluating the influence of several parameters on the behaviour of the composite system: The strength of the steel beam, thickness of the web, thickness and width of the bottom flange of the steel beam and concrete cover thickness on top of the beam. The results indicated a great influence of the steel strength and the thickness of the bottom flange of the steel beam on the capacity of the composite floor. The remaining parameters had limited influences on the results.

2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method (유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

A Evaluation Study on Reduction Method of Floor Impact Noise through Field Test and the Effective Method for Heavy Impact Noise (현장실험을 통한 바닥충격음 저감공법의 성능평가 및 중량충격음 저감 방안)

  • Lee, Byung-Kwon;Bae, Sang-Hwan;Hong, Cheon-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.451-456
    • /
    • 2004
  • In this study, evaluation was carried out for reduction method of floor impact noise through field test and the effective methods for heavy impact noise were proposed. As a field test, impact noise reduction materials such as EPP, EEPS, EVA, PE and so on, did not satisfied the recommandation value at the condition of 150mm thickness concrete slab. The evaluation results for those materials by 'inverse A curve' showed $53\sim55dB$ at heavy impact noise and $53\sim58dB$ at light impact noise. But, two methods proposed by authors were evaluated $47\sim50dB$ at heavy Impact noise and $54\sim58dB$ at light Impact noise on the similar concrete slab thickness.

  • PDF

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

A Study on the Thermal Conductivity and Floor Impact Sound of Polyurethane Concrete (폴리우레탄 콘크리트의 열전도율과 바닥충격음에 관한 연구)

  • 강재홍;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.676-681
    • /
    • 1997
  • The purpose of this study is to evaluate the thermal Conductivity and Foolr Impact Sound of Polyurethane Concretes. The Polyurethane Concretes are prepared with various resin content, Fine and Coarse aggregates content, and its thickness, and tested for the Thermal Conductivity and Impact Sound. From the test results. the sound insulation grade of polyurethane concretes by the floor impact sound test on high frequency band is L-60, and its effect is considerable Polyurethane concretes have high degree of solidity compared with other heat shield materials, and its thermal conductivity is 0.05kcal/$mh^{\cire}C$. And it is suitable for sound proof floor materials.

  • PDF

Noise and Vibration Characteristics of Floor Impact in a Test Building (표준실험동에서의 소음.진동 특성)

  • Jeong, Young;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

The Development of Damping Material for Standard Floating Floor Type-5 Using Ethylene Vinyl Acetate co-polymer(EVA) & Urethane Form (EVA와 경질우레탄폼을 이용한 표준바닥구조 벽식-5용 단열완충재 개발)

  • Park, Cheol-Yong;Kim, Sang-Hoon;Jang, Dong-Woon;Jang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.461-464
    • /
    • 2004
  • The reduction effect of floor impact noise depends on the various factors such as stiffness and thickness of the concrete slab, finishing If ceiling materials and the composition method. Among the rest it is well known that floating floor system is more effective. Standard floating floor(SFF) type-2 consisted of 50mm lightweight aerated concrete(LAC) and 20mm damping material has been widely used. But LAC construction problem on dry damping material occurred and the reduction effect of floor impact noise has bare minimum qualifications. Thus the aim of this study is to develop 40mm composite damping material(Soundzero Plus) for SFF type-5 which substitute LAC and damping material. 'Soundzero Plus' is satisfied with quality requirement for damping material for SFF. The heat transition rate, $0.45W/m^2{\cdot}K$ is more effective 55% about than the regulation. The test results of floor impact noise by using 'Soundzero Plus' are showed good improvement about 12dB (tested by tapping machine) and 4dB (tested by bang machine) between before and after.

  • PDF

Measurements of the vibration responses of CLD structures varied in thickness of the damping layer (제진층의 두께변화에 따른 CLD 구조의 진동응답 측정)

  • Lee, Sin-Young;Yoo, Seung-Yup;Jeon, Jin-Yong;Kim, Seung-Joon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1463-1466
    • /
    • 2007
  • Visco-elastic damping material for reducing heavy-weight floor impact noise and vibration in reinforced concrete structures was tested according to its thickness in the damping layer. The effect of damping material was compared with 20, 15, 10 and 5mm thickness. The wave propagation characteristics was measured for suggestion of an efficient method to reduce the floor impact noise. The method was proposed using the flexural wave propagation characteristics. The result showed that reduction of the thickness of damping layer made a slight difference; the natural frequency moved to higher frequency and the amplitude increased at low frequencies with 5mm thickness of damping material.

  • PDF

Effect of the Combination of Point Loads on the Design Flexural Capacity for Fiber Reinforced Concrete Floor Slab (집중하중 조합에 의한 섬유 보강 콘크리트 바닥슬래브의 설계 휨 내력)

  • Lee, Jong-Han;Cho, Baik-Soon;Kim, Jung-Sik;Cho, Bum-Gu;Ki, Han-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • In this study, the flexural capacity of fiber reinforced concrete floor slabs were evaluated using main design loads, racking and moving loads. Based on design standards and guidelines, the magnitude and loaded area of each load were determined, and its relationship was assessed. For the application of a single load, flexural capacity should be evaluated in the edge of a floor slab. In addition, the slab with thickness and concrete strength, greater than 180mm and 35MPa, respectively, sufficiently satisfied flexural capacity with a minimum of equivalent flexural strength ratio. The combination of racking loads required the largest equivalent flexural strength ratio to satisfy the flexural capacity of the floor slab. The combination of racking and moving loads showed equivalent flexural strength ratio smaller than the case of combination of racking loads, but larger than the application of single racking or moving loads. The results of this study indicated that the flexure of fiber reinforced concrete floor slabs should be designed using the combination of design loads.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.