• Title/Summary/Keyword: Flooding Simulation

Search Result 289, Processing Time 0.027 seconds

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Operational Improvement of Small Urban Storm Water Pumping Station (2) - Comparative Study to Reduce the Flooding Problems using Flood Simulation Model (도시 소유역 배수펌프장 운영개선 방안 연구 (2) - 침수범람모의에 의한 침수방지 방안 비교 연구)

  • Gil, Kyung-Ik;Han, Jong-Ok;Kim, Goo-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.110-115
    • /
    • 2006
  • Flooding situation of Sutak basin was simulated and simulation seemed to be consistent with the real flooding situation in terms of high water levels and timings of flooding. The flood simulation model was used to evaluate alternatives to mitigate flooding problems in Sutak basin. From the evaluation of flood mitigation plans, it was found that combined operation of Sutak and Inchang pumping stations through partial diversion of inflow of Sutak pumping station to Inchang pumping station was the most effective one among the suggested mitigation plans. About 500 meter diversion channel will be needed to send 30% of Sutak pumping station inflow to Inchang pumping station. This will reduce overload of Sutak pumping station and the storage capacity of Inchang pumping station will be more efficiently utilized.

Design of Modified Flooding Algorithm Applicable to Sensor Network (센서 네트워크에 적용 가능한 수정된 Flooding 알고리즘 개발)

  • Kim, Sung-Ho;Kim, Si-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.32-38
    • /
    • 2007
  • Wireless Ad-Hoc network which doesn't utilize any established infrastructure requires different communication protocols. Among them, Flooding algorithm is generally used in wireless Ad-Hoc network for packet transmission. However, Flooding algorithm has many drawbacks such as energy consumption according to the increase of nodes. Therefore, a modified flooding algorithm which can effectively overcome the aforementioned drawbacks is proposed in this paper. The performance of the proposed scheme is shown by various simulation studies.

Development of Inundation Flooding Simulation Program for Selecting Optimum Installation Site for Rainwater Infiltration Detention Block (빗물침투저류블록의 설치 최적지 선정을 위한 침수범람 시뮬레이션 프로그램의 개발)

  • Kim, Seongpyo;Lee, Taegyo;Ryu, Jungrim;Park seonmee;Choi, Heeyong;Choi, Hyeonggil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.129-130
    • /
    • 2023
  • This study proposes rainwater infiltration retention blocks as a solution to the flooding problems caused by recent climate change and developed a flood prediction simulation program to select the optimal site for installing rainwater infiltration retention blocks that can minimize damage from floods. By applying the existing 2D flood analysis model G2D and adding a reservoir function, the volume of water before and after installation can be determined through simulation results.

  • PDF

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 침수·침몰 시뮬레이션 연구)

  • Lee, Jae-Seok;Jung, Hyun-Sub;Oh, Jai-Ho;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.451-466
    • /
    • 2017
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using highly advanced Modeling & Simulation (M&S) system of Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was carried out and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

QoS-Aware Bounded Flooding RWA Algorithm in the Next Generation Optical Internet based on DWDM Networks (DWDM기반의 차세대 광인터넷에서 QoS 기반의 제한적 플러딩 RWA 알고리즘에 관한 연구)

  • Kim Yong-Seong;Lee Jae-Dong;Hwang Jin-Ho;Woo Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.1-14
    • /
    • 2006
  • Multi-constraint QoS routing has been seen as crucial network property in the next generation optical Internet based on DWDM Networks. This paper proposes a new QoS routing algorithm based on flooding method, called bounded flooding routing (BFR) algorithm which can meet multi-constraint QoS requirements. Primarily, the BFR algorithm tries to reduce network overhead by accomplishing bounded-flooding to meet QoS requirements, and improve blocking probability and wavelength utilization. Also, as one effort to improve routing performance, we introduce a new concept, ripple count, which does not need any link-state information and computational process. For extensive analysis and simulation study, as a critical concern, in DWDM-based networks we deploy limited wavelength conversion capability within DWDM nodes. And the simulation results demonstrate that the BFR algorithm is superior to other predominant routing algorithms (both original flooding method and source-directed methods) in terms of blocking probability, wavelength channels required and overhead.

Estimation Process for the Capacity of Emergency Drainage System on a Ship after Flooding Accident (선박 침수사고를 대비한 비상용 배수시스템 용량추정 프로세스에 관한 연구)

  • PARK, Byung-Soo;KIM, Sung-Soo;LEE, Soon-Sup;KANG, Dong-Hoon;CHO, Hyun-Kuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1739-1750
    • /
    • 2016
  • This paper proposed a process for estimating the required capacity of emergency drainage system on a ship when the ship encounters a flooding accident. The process was established by selecting target vessel, making a scenario of flooding accident, considering static behavior of flooding water and the effect of ship motion due to ocean condition. In order to obtain the object of the research, MATLAB codes were developed for analyzing of static behavior of flooding water. Additionally, Ansys AQWA-NAUT was used to analyze the motion of the ship under an ocean condition and then the effect of ship motion was considered when the static behavior of flooding water was studied. The research exploited a trawler as a target vessel, and estimate the necessary capacity of the trawler's emergency drainage system by simulating a flooding water in the vessel.

Development of Flooding and Overflow Simulation Technology for Rainwater Infiltration Storage Block Placement (빗물침투저류블록 설치 최적지 선정을 위한 침수범람 시뮬레이션 기술 개발)

  • Kim, Seongpyo;Ryu, Jungrim;Kim, Hojin;Choi, Heeyong;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • This study addresses the escalating flood damages prompted by recent climate shifts characterized by extreme weather events and proposes rainwater infiltration blocks as a potential solution. Recognizing the limitations inherent in existing inundation simulation methods, we advocate for the integration of novel functionalities, particularly leveraging drone technology. Our research endeavors encompass experimental assessments of inundation and flooding simulation technologies. These evaluations are conducted within areas where rainwater infiltration storage blocks have been implemented, juxtaposed against existing programs utilizing Digital Elevation Models(DEM) and Digital Surface Models(DSM). Through this comparative analysis and a meticulous scrutiny of the adaptability of inundation and flooding simulation to real-world deployment scenarios, we ascertain the efficacy of the simulation program as a decision-making tool for identifying optimal sites for rainwater infiltration storage block installation.

Inundation Analysis on the Flood Plain in Ungauged Area Using Satellite Rainfall and Global Geographic Data: In the case of Tumen/Namyang Area in Duman-gang(Riv.) (위성강우와 글로벌 지형 자료를 이용한 미계측 지역 홍수터 침수모의 : 두만강 도문/남양 지역을 중심으로)

  • CHOI, Yun-Seok;KIM, Joo-Hun;KIM, Ji-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.51-64
    • /
    • 2020
  • The purpose of this study is to present a method for quantitative analysis of flooding at the flood plain in an ungauged area using satellite rainfall and global geographic data. For this, flooding of the Tumen/Namyang area in the Duman-gang(Riv.) was simulated and the flood conditions were quantitatively analyzed. The IMERG data, a rainfall data derived from satellite images, was used as rainfall data. The GRM model was applied to the watershed runoff simulation, and the G2D model was applied to the flooding simulation of the Tumen/Namyang area. Flood event caused by Typhoon Lionrock in August 2016 was applied. Recorded peak discharge of the Tumen/Namyang region was used to verify the runoff simulation results. To verify the result of the inundation simulation, the flood situation collected through field survey and satellite image data before and after the flood were used. The peak flow rates by the runoff simulation and flood record were 7,639㎥/s and 7,630㎥/s, respectively, with a relative error of about 0.1%. In the flood simulation, the results were similar to the flooding ranges identified in the survey data and satellite images. And the changes of flooding depth and flooding time in the flood plain in Tumen/Namyang area could also be assessed. The methods and results of this study will be useful for the quantitative assessment of floods in the ungauged areas.

Application of POM to the River Flow (POM의 하천 흐름 해석에의 적용)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • During typhoon periods, coastal regions are often directly flooded by typhoon-surges. There are also many cases where coastal regions are inundated by river inundations or dam breaks. However, most studies on coastal flooding by typhoons have been restricted to cases involving the sea. Flooding by river inundation has been excluded in those studies. Usually ocean numerical models are not applied to river flow because the governing equations for ocean flow and river flow are not the same. For a coastal flooding simulation with river inundation, POM, the three-dimensional numerical ocean model, was applied to the popular river flow problems, dam-break problem, and flows over a spillway. The simulated results showed good agreement with other numerical simulations and measured data, suggesting the possibility of using POM in coastal flooding simulations involving direct coastal surges and river inundations.