• Title/Summary/Keyword: Flooding Routing Protocol

Search Result 75, Processing Time 0.027 seconds

Coastal and Marine Environment Monitoring System using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 연안.해양 환경모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Seung-Chul;Kim, Jong-Jin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.180-183
    • /
    • 2011
  • Recently, environmental problems have been deteriorating rapidly. Therefore, there is an urgent need to establish policies and research in the conservation of the global environment. Many researchers are studied in environment systems to prevent and reduce pollution of water, air and soil actively. In this paper, several parameters such as temperature, humidity, illumination, barometric pressure, dew point, water quality data, and air conditions are collected and transmitted thorough wireless sensor network. The field server is located in the coastal and marine area so that any abrupt changes can be detected quickly. In addition, WSN based flooding routing protocol for efficient data transmission is designed to support and monitor information of climate and marin factors.

  • PDF

A Proactive Dissemination Protocol using Residual Energy and Signal Strength for WSNs (무선 센서 네트워크에서 에너지 잔량과 신호세기를 이용한 데이터 전송 프로토콜)

  • Park, Soo-Yeon;Kim, Moon-Seong;Jeong, Eui-Hoon;Bang, Young-Cheo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • In this paper, a data dissemination protocol that transmits data collected for Wireless Sensor Networks (WSNs) is newly proposed, and the proposed proactive protocol takes into account energy consumption minimized and delay time disseminated. The well-known SPMS (Shortest Path Mined SPIN) forms the shortest path-based routing table obtained by Bellman Ford Algorithm (BFA) and disseminates data using a multi-hop path in order to minimize energy consumption. The mentioned properties of SPMS cause memory burden to create and maintain the routing tables. In addition, whenever BFA is executed, it is necessary to suffer from the energy consumption and traffic occurred. In order to overcome this problem, a proactive dissemination protocol using Residual Energy and Signal Strength, called RESS, is proposed in this paper. Simulation results show that RESS outperforms SPMS up to 84% in terms of the number of traffic messages and the transmitted delay time of RESS is similar to that of SPMS using the shortest path.

A Cluster-based Power-Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kweon, Ki-Suk;Lee, Seung-Hak;Yun, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.76-90
    • /
    • 2006
  • Sensor network consists of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The life time of each node in the sensor network significantly affects the life time of whole sensor network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all sensor nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Cluster-Based Power-Efficient Routing (CBPER) Protocol which provides scalable and efficient data delivery to multiple mobile sinks. Previous r(luting protocols, such as Directed Diffusion and TTDD, need to flood many control packets to support multiple mobile sinks and many sources, causing nodes to consume their battery. In CBPER, we use the fact that sensor nodes are stationary and location-aware to construct and maintain the permanent grid structure, which makes nodes live longer by reducing the number of the flooding control packets. We have evaluated CBPER performance with TTDD. Our results show that CBPER is more power-efficient routing protocol than TTDD.

An Improved Message Broadcast Scheme over Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 메시지 방송 기법)

  • Kim, Kwan-Woong;Kim, Byun-Gon;Bae, Sung-Hwan;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.588-594
    • /
    • 2010
  • In a multi-hop wireless sensor network, broadcasting is an elementary operation to support command message sending, route discovery and other application tasks. Broadcasting by flooding may cause serious redundancy, contention, and collision in the network, which is referred to as the broadcast storm problem. Many broadcasting schemes have been proposed to give better performance than simple flooding in wireless sensor network. How to decide whether re-broadcast or not also poses a dilemma between reach ability and efficiency under different host densities. In this paper, we present popular broadcasting schemes, which can reduce re-broadcast packets and improve SRB(Saved ReBroadcast). Simulation results show different levels of improvement over the simple flooding scheme.

Communication Protocol to Support Mobile Sinks by Multi-hop Clusters in Wireless Sensor Networks (무선 센서 네트워크에서 멀티-홉 클러스터를 통한 이동 싱크 지원 통신 프로토콜)

  • Oh, Seung-Min;Jung, Ju-Hyun;Lee, Jeong-Cheol;Park, Ho-Sung;Yim, Yong-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • In wireless sensor networks(WSNs), the studies that support sink mobility without global position information exploit a Backbone-based Virtual Infrastructure (BVI) which considers one-hop clusters and a backbone-based tree. Since the clusters of a sink and a source node are connected via flooding into the infrastructure, it causes high routing cost. Although the network could reduce the number of clusters via multi-level clusters, if the source nodes exist at nearest clusters from the cluster attached by the sink and they are in different branches of the tree, the data should be delivered via detour paths on the tree. Therefore, to reduce the number of clusters, we propose a novel multi-hop cluster based communication protocol supporting sink mobility without global position information. We exploit a rendezvous cluster head for sink location service and data dissemination but the proposed protocol effectively reduces data detour via comparing cluster hops from the source. Simulation shows that the proposed protocol is superior to the existing protocols in terms of the data delivery hop counts.

Data Dissemination Protocol for Supporting Both Sink Mobility and Event Mobility in Wireless Sensor Networks (무선 센서 네트워크에서 싱크 이동성과 이벤트 이동성을 지원하는 데이타 전달 프로토콜)

  • Choi, Young-Hwan;Lee, Dong-Hun;Ye, Tian;Jin, Min-Sook;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.316-320
    • /
    • 2008
  • Data dissemination schemes for wireless sensor networks, where sinks and event targets might be mobile, has been one of the active research fields. For doing that, stationary nodes gathered data on behalf of mobile sinks and the relayed data in previous studies. their schemes, however, lead to frequent query flooding and report congestion problems over sink moving. We propose a data dissemination protocol to solve both the query flooding and the report congestion problem. Our scheme improves the two shortcomings through sink location management. Finally, we prove effectiveness of our protocol through computer simulations.

A Robust Disjoint Multipath Scheme based on Geographic Routing in Irregular Wireless Sensor Networks (불규칙적 무선센서네트워크에 강한 위치기반 다중경로 제공 방안)

  • Kim, Sung-Hwi;Park, Ho-Sung;Lee, Jeong-Cheol;Oh, Seung-Min;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1B
    • /
    • pp.21-30
    • /
    • 2012
  • Sensor networks are composed of a great number of sensor nodes with constrained battery. Disjoint multipath scheme based flooding method has a merit that efficiently construct multipath in irregular networks, but causes lots of energy consumption in networks. Flooding method is not a suitable technology in wireless sensor networks with constrained battery. We introduce energy-efficient geographic routing scheme considered as an efficient, simple, and scalable routing protocol for wireless sensor networks. The geographic routing scheme on multipath generates a problem with a congestion. So we introduce the concept of multipath pipeline as a congestion avoidance strategy. But multipath pipelines have a big problem on the boundary of holes under irregular networks. We propose a novel disjoint multipath scheme as combined method with geographic routing scheme and hole detouring algorithm on multipath. A novel disjoint multipath scheme constructs disjoint multipath pipelines efficiently for reliability without a collision in irregular wireless sensor networks. Simulation results are provided to validate the claims.

An Enhanced Broadcasting Algorithm in Wireless Ad hoc Networks (무선 ad hoc 네트워크를 위한 향상된 방송 알고리즘)

  • Kim, Kwan-Woong;Bae, Sung-Hwan;Kim, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.956-963
    • /
    • 2008
  • In a multi-hop wireless ad hoc network broadcasting is an elementary operation to support route discovery, address resolution and other application tasks. Broadcasting by flooding may cause serious redundancy, contention, and collision in the network which is referred to as the broadcast storm problem. Many broadcasting schemes have been proposed to give better performance than simple flooding in wireless ad hoc network. How to decide whether re-broadcast or not also poses a dilemma between reachability and efficiency under different host densities. In this paper, we propose enhanced broadcasting schemes, which can reduce re-broadcast packets without loss of reachability. Simulation results show that proposed schemes can offer better reachability as well as efficiency as compared to other previous schemes.

Fuzzy Logic based Propagation Limiting Method for message routing in Wireless Sensor Networks (무선 센서 네트워크에서 메시지 라우팅을 위한 퍼지로직 기반의 전달 영역 제한 기법)

  • Chi, Sang-Hoon;Cho, Tae-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.8-12
    • /
    • 2005
  • 최근 마이크로 센서와 무선 통신 기술의 진보는 센서 네트워크의 발전을 가능하게 하였다. 이와 같은 사실은 무선 센서 네트워크를 위한 수많은 라우팅 프로토콜의 개발로 이어졌으며, 다양한 구조의 알고리즘들이 제안되었다. 특히, 디렉티드 디퓨젼(Directed Diffusion; DD)은 데이터 중심 기반의 라우팅 알고리즘으로 속성 칼 쌍을 이용하여 통신하는 센서 네트워크의 한 패러다임이라고 할 수 있다. 그러나 기존의 DD에서는 작업을 요청하는 질의 메시지(interest message)가 전체 센서 네트워크에 플러딩(flooding)되는데, 이러한 과정은 에너지 소비 측면에서 볼 때 매우 비효율적이라고 할 수 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 센서 노드의 에너지와 밀도 정보를 고려한 임계값을 이용하여 데이터의 전송 지역을 제한함으로서, 네트워크의 에너지 소비를 줄일 수 있는 새로운 메시지 전달영역 제한기법(propagation limiting method; PLM)을 제안한다. 퍼지 규칙 기반 시스템은 센서 필드에 배치된 노드들의 에너지와 밀도 정보를 입력 파라미터로 사용하여 메시지 라우팅을 위한 임계값 결정에 사용된다 본 연구에서 제안된 기법을 사용하여 센서 네트워크의 에너지 소비를 실험한 결과 기존에 제안되었던 알고리즘들에 비해 상대적으로 높은 효율성을 나타내었으며, 전체적으로 네트워크의 수명도 연장할 수 있었다.

  • PDF

NetLogo Extension Module for the Active Participatory Simulations with GoGo Board (고고보드를 이용한 능동적 참여 모의실험을 위한 NetLogo 확장 모듈)

  • Xiong, Hong-Yu;So, Won-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1363-1372
    • /
    • 2011
  • Flooding based routing protocols are usually used to disseminate information in wireless sensor networks. Those approaches, however, require message retransmissions to all nodes and induce huge collision rate and high energy consumption. In this paper, HoGoP (Hop based Gossiping Protocol) in which all nodes consider the number of hops from sink node to them, and decide own gossiping probabilities, is introduced. A node can decide its gossiping probability according to the required average reception percentage and the number of parent nodes which is counted with the difference between its hop and neighbors' ones. Therefore the decision of gossiping probability for network topology is adaptive and this approach achieves higher message reception percentage with low message retransmission than the flooding scheme. Through simulation, we compare the proposed protocol with some previous ones and evaluate its performance in terms of average reception percentage, average forwarding percentage, and forwarding efficiency. In addition, average reception percentage is analyzed according to the application requirement.