• Title/Summary/Keyword: Flood reduction

Search Result 283, Processing Time 0.029 seconds

A Study on the Proper Size of Rainwater Stored Tank in Submerged Districts Using SWMM Program (SWMM을 활용한 침수예상지역 우수저류조의 적정크기결정에 관한 연구)

  • Jang, Seung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.69-76
    • /
    • 2009
  • The Storm Water Management Model(SWMM) by EPA is a dynamic rainwater-runoff simulation model used for single event or long-term simulation of runoff quantity and quality from primarily urban areas. The SWMM simulation program is operated by the site area, the weather date, conduit plan etc. on reference region. The purpose of this study was to analyze flood area, the duration of flooded and surcharged on the reference region. Without rainwater stored tank, the area of flooded and surcharged on reference area is similar to the area of reference region. But, With rainwater stored tank, the area of flooded and surcharged on reference area is much reduced compared to without rainwater stored tank. According to SWMM simulation results, the rainwater stored tank is located closer to site is more effective for reduction of duration of flooded and surcharged and flow rate.

Shalt-Term Hydrological forecasting using Recurrent Neural Networks Model

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1285-1289
    • /
    • 2004
  • Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.

  • PDF

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교연구)

  • Baek, Hyo-Sun;Lee, De-Young;Kang, Young-Buk;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation.The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall.The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교 분석)

  • Lee, Dae-Young;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.95-102
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation. The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall. The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Risk of Flood Damage Reduction Analysis in Sore Port Area Through Rainwater Retaining Facility (우수저류조 설치를 통한 소래포구 지역의 침수피해 위험 저감효과 분석)

  • Choi, Gye-Woon;Lee, So-Young;Kim, Dong-Eon;Baeck, Seung-Hyub
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1701-1705
    • /
    • 2010
  • 최근의 기후변화로 인한 각종 관측 기록들과 여러 가지의 기후전망에 따르면 강한 강우사상으로 인한 극심한 홍수 또는 가뭄의 위험을 초래하고 있으며 이는 전 세계적으로 발생하는 문제이기도 하다. 기상이변에 의한 집중호우와 그밖에 도시 개발로 인한 유출량의 증가로 인해 홍수피해가 점점 늘어나고 있으며, 극심한 강수 부족에 의한 가뭄의 피해도 발생한다. 이러한 피해의 근본적인 대책이 없다면 어떠한 형태로 발생할지 모르는 물 관련 재해에 효과적으로 대처할 수 없을 것이다. 본 연구에서는 도시유출해석모형인 MOUSE를 이용하여 상습 침수 지역이었던 소래포구 지역의 지표면 유출량을 통한 관망해석을 실시하였으며, 50년 빈도의 가장 불리한 해석조건인 임계지속시간을 산정하여 연구 대상지역에 적용하였다. 연구 대상지역의 우수저류조 설치 전과 후의 관망 내 수위 및 첨두유량 변화를 비교한 결과, 우수저류조 설치 유무에 따라 수위 및 첨두유량에서 저감 효과가 나타나는 것을 볼 수 있었다.

  • PDF

Study on Increase of Flood Reduction Effect of Washlands according to Type and Characteristics of Diverting Spillway (취수부 형식 및 제원 변화에 따른 강변저류지의 홍수저감효과 개선방안에 대한 연구)

  • Baek, Chun-Woo;Kim, Do-Hyeon;Roh, Hui-Sung;Ahn, Tae-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1510-1514
    • /
    • 2010
  • 강변저류지는 홍수터, 하천연안 저지대 농경지 등을 이용하여 기존 제방의 일부 구간에 취수부를 설치하고 계획홍수 초과 또는 일정 수위 이상 발생 시 이를 일시 저류함으로써 하류의 홍수량을 경감시키는 소규모 수공구조물이다. 이러한 강변저류지와 같은 소규모 수공구조물의 홍수조절효과에 가장 큰 영향을 미치는 인자로는 저류용량이 있으나, off-line 형식을 강변저류지에 적용할 경우 저류용량 이외에도, 취수부의 형식(월류제, 수문)과 취수부의 제원(월류고, 월류폭 등)은 강변저류지의 홍수조절효과에 큰 영향을 미친다. 본 연구에서는 저류용량변화에 따른 홍수조절효과 변화에 초점을 맞춰 수행된 기존의 연구들과 달리, 취수부형식과 취수부 제원 변화에 따른 강변저류지의 홍수조절효과 개선방안을 제시하고자 한다.

  • PDF

A Framework of Managing Supply Chain Disruption Risks Using Network Reliability

  • Ohmori, Shunichi;Yoshimoto, Kazuho
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2013
  • This paper discusses how to manage supply chain disruption risks from natural disasters or other low-likelihood-high-impact risk drivers. After the catastrophic earthquake in Eastern Japan and the severe flood in Thailand, most companies have been attempting to re-establish the business continuity plan to prevent their supply chain from disruption. However, the challenges for managers and individual risks are often interrelated, and thus, actions that mitigate one risk can end up being no contribution as a whole. In this paper, we describe a framework for assessing how much impact individual mitigation strategies have on the entire supply chain protection against disruption, using network reliability. We propose three categories of risk-mitigation approaches: Stabilization, Absorption, and Duplication. We analyze the situation under which each of these strategies is the best suitable. With a clear understanding of relations between these mitigation strategies and the entire supply chain risks, managers can select effective risk-reduction approaches to their supply chain.

Strategies for future flood risk reduction in mid-size basins (기후변화에 따른 미래 중권역 홍수 피해 저감 방안)

  • Kim, Myojeong;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.385-385
    • /
    • 2019
  • 기후변화의 영향을 받아 평균 기온 및 강수량이 증가하는 추세이며, 이로 인하여 홍수로 인한 피해 강도와 발생 빈도가 증가한다. 선진국을 중심으로 기후변화에 따른 미래 예측은 기후변화 시나리오로 분석하는 연구가 진행되고 있으며, 기후변화 시나리오에 따라 기온 상승률 및 강수량의 증가량, 극한 강우사상의 발생 빈도 및 발생 강도가 다르게 결정된다. 본 연구에서는 위험관리 대응이 필요한 유역에 대하여 순차적으로 하천 개수율 개선, 하수도보급률 개선, 양수량 증가, 유수지 용량 증가로 치수 대책을 개선하였으며, 치수 대책 개선으로 인한 홍수 위험 지수 및 위험관리 대응 필요유역의 변화를 분석하였다. 치수 대책 개선은 홍수 위험 지수 및 위험관리 대응 필요유역의 감소 형태가 뚜렷이 나타난다.

  • PDF

A Study on Variation of Land-use in River Area caused by Levee Construction (제방 축조에 따른 하천공간 토지이용 변화에 관한 연구)

  • Shin, Hyoung Sub;Hong, Il;Kim, Ji-Sung;Kim, Kyu Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2419-2427
    • /
    • 2014
  • This paper defines the hydro-geomorphological river area to estimate the change of the river function before/after levee construction, and proposes the methodology that calculates the river area by using GIS. The boundary of river area is determined by the 100-year potential flood inundation area without the levee effect of the flood protection. Firstly, 1918' land-use map was digitized and the changes were analyzed by comparing with 2007' digitized map. The result shows that urban/farmland zone in Mankyung river area were increased by 0.4%/11.6% and bare ground was decreased by 10.0% so that the effective use of floodplain due to levee construction leaded to better productivity, but the decrease of the environment function of the river was predicted as result of the reduction of the river area.

Evaluation for Applicability of GIS Based Multi-Directional Flow Allocation Model (GIS기반 다방향 흐름 분배 모형의 적용성 검토)

  • Choi, Seung-Yong;Lee, Won-Ha;Han, Kun-Yeun;Kim, Keuk-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.12-31
    • /
    • 2010
  • The objective of this study is to evaluate the applicability of GIS based multi-directional flow allocation model. In order to evaluate the suggested model in this study, it was applied to real watersheds, Pyeongchang and Soyang river basin. The simulation results were compared with observed values, and showed good agreements. The improvement of accuracy and reduction of simulation time were carried out by applying multi-directional flow allocation. Accordingly, the applied methodologies presented in this study will be used to predict accurate runoff, which plays a major role in integrated flood management. If this model is combined with the techniques of rainfall forecasting, it will contribute to the real-time flood forecasting and warning in the future.