• 제목/요약/키워드: Flood modeling

검색결과 277건 처리시간 0.036초

격자유형과 해상도를 고려한 2차원 홍수범람 모델링 (Two-Dimensional(2-D) Flood Inundation Modeling Considering Mesh Type and Resolution)

  • 김병현
    • 대한토목학회논문집
    • /
    • 제39권2호
    • /
    • pp.247-256
    • /
    • 2019
  • 본 연구에서는 홍수모델링을 위해 삼각격자와 사각격자를 포함하는 혼합격자의 적용이 가능한 2차원 Godunov형 유한체적모형을 이용하여 격자형상과 해상도에 따른 홍수위, 홍수범람범위, 모형의 계산시간을 비교 분석하였다. 연구유역은 2000년 10월 29일부터 11월 19일까지 22일 동안 홍수가 발생한 영국의 Upton-upon Severn 유역이다. 홍수 모델링을 위해 고해상도 LiDAR (Light Detection And Ranging)를 이용하여 지형자료를 구축하였으며, 격자유형 및 해상도에 따른 2차원 홍수모델링 결과는 홍수기간 동안 촬영된 4개의 ASAR (Airborne Synthetic Aperture Radar) 영상자료와 비교하였다. 본 연구는 동일한 지형과 경계조건을 사용하더라도, 격자의 형상과 해상도에 따라 홍수위와 범람범위가 큰 차이를 가질 수 있음을 보여주었으며, 2차원 홍수모델링의 목적과 상황에 맞는 적절한 격자유형과 해상도의 선택이 필요함을 보여준다.

범용 DEM 데이터를 이용한 2차원 홍수범람 모형의 개발 (Development of a Grid Based Two-Dimensional Numerical Method for Flood Inundation Modeling Using Globally-Available DEM Data)

  • 이승수;이기하;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.659-663
    • /
    • 2010
  • In recent, flood inundation damages by hydraulic structure failures have increased drastically and thus a variety of countermeasures were needed to minimize such damages. A real-time flood inundation prediction technique is essential to protect and mitigate flood inundation damages. In the context of real time flood inundation modeling, this study aims to develop a grid based two-dimensional numerical method for flood inundation modeling using globally-available DEM data: SRTM with $90m{\times}90m$ spatial resolution. The newly-developed model guarantees computational efficiency in terms of geometric data processing by direct application of DEM for flood inundation modeling and also have good compatibility with various types of raster data when compared to a commercial model such as FLUMEN. The model, which employed the leap-frog algorithm to solve shallow water and continuity equations, can simulate inundating flow from channel to lowland and also returning flow from lowland to channel by comparing water levels between channel and lowland in real time. We applied the model to simulate the BaekSan levee break in the Nam river during a flood period from August 10 to 13, 2002. The simulation results had good agreements with the field-surveyed data in terms of inundated area and also showed physically-acceptable velocity vector maps with respect to inundating and returning flows.

  • PDF

Assessing the capability of HEC-RAS coupled 1D-2D model through comparison with 2-dimensional flood models

  • Dasallas, Lea;An, Hyunuk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.158-158
    • /
    • 2019
  • Recent studies show the possibility of more frequent extreme events as a result of the changing climate. These weather extremes, such as excessive rainfall, result to debris flow, river overflow and urban flooding, which post a substantial threat to the community. Therefore, an effective flood model is a crucial tool in flood disaster mitigation. In recent years, a number of flood models has been established; however, the major challenge in developing effective and accurate inundation models is the inconvenience of running multiple models for separate conditions. Among the solutions in recent researches is the development of the combined 1D-2D flood modeling. The coupled 1D-2D river flood modeling allows channel flows to be represented in 1D and the overbank flow to be modeled over two-dimension. To test the efficiency of this approach, this research aims to assess the capability of HEC-RAS model's implementation of the combined 1D-2D hydraulic simulation of river overflow inundation, and compare with the results of GERIS and FLUMENS 2D flood model. Results show similar output to the flood models that had used different methods. This proves the applicability of the HEC-RAS 1D-2D coupling method as a powerful tool in simulating accurate inundation for flood events.

  • PDF

논 지구의 배수로 부정류 흐름 모의를 위한 모델링 시스템 (Modeling System for Unsteady Flow Simulations in Drainage Channel Networks of Paddy Field Districts)

  • 강민구
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.1-9
    • /
    • 2014
  • A modeling system is constructed by integrating an one-dimensional unsteady flow simulation model and a hydrologic model to simulate flood flows in drainage channel networks of paddy field districts. The modeling system's applicability is validated by simulating flood discharges from a paddy field district, which consists of nine paddy fields and one drainage channel. The simulation results are in good agreement with the observed. Particularly, in the verification stage, the relative errors of peak flows and peak depths between the observed and simulated hydrographs range 8.96 to 10.26 % and -10.26 to 2.97 %, respectively. The modeling system's capability is compared with that of a water balance equation-based model; it is revealed that the modeling system's accuracy is superior to the other model. In addition, the simulations of flood discharges from large-sized paddy fields through drainage channels show that the flood discharge patterns are affected by drainage outlet management for paddy fields and physical characteristics of the drainage channels. Finally, it is concluded that to efficiently design drainage channel networks, it is necessary to analyze the results from simulating flood discharges of the drainage channel networks according to their physical characteristics and connectivities.

Unveiling the mysteries of flood risk: A machine learning approach to understanding flood-influencing factors for accurate mapping

  • Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.164-164
    • /
    • 2023
  • This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.

  • PDF

금강하구둑 홍수예경보 시스템 개발(I) -시스템의 구성- (Real-Time Flood Forecasting System For the Keum River Estuary Dam(I) -System Development-)

  • 정하우;이남호;김현영;김성준
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.79-87
    • /
    • 1994
  • A real-time flood forecasting system(FLOFS) was developed for the real-time and predictive determination of flood discharges and stages, and to aid in flood management decisions in the Keum River Estuary Dam. The system consists of three subsystems : data subsystem, model subsystem, and user subsystem. The data subsystem controls and manages data transmitted from telemetering systems and simulated by models. The model subsystem combines various techniques for rainfall-runoff modeling, tidal-level forecasting modeling, one-dimensional unsteady flood routing, Kalman filtering, and autoregressivemovingaverage(ARMA) modeling. The user subsystem in a menu-driven and man-machine interface system.

  • PDF

자연하천의 홍수범람 모의 및 가시화 (Modeling and Visualization of Flood Inundation in Natural River)

  • 고태진;정태성
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.157-164
    • /
    • 2008
  • 하천의 홍수범람 예보시스템개발을 위한 초기연구로 부정류 모형인 FLDWAV 모형을 사용하여 홍수범람을 해석하고, 모형결과인 홍수 범람 현상의 시간적 변화를 그래픽을 사용하여 효과적으로 볼 수 있도록 한 홍수범람 가시화 시스템을 개발하였다. FLDWAV를 이용한 모형결과의 신뢰성을 확인하기 위해 HEC-RAS 모형을 동시에 적용하여 모의결과를 비교한 결과, 두 모형에 의한 결과는 거의 일치하였다. 본 연구에서 개발된 가시화시스템을 활용하면, 강우로 인해 발생되는 자연하천에서 홍수파 전파와 하천 범람을 신속하고 자세하게 그래픽으로 관찰할 수 있다. 본 시스템은 수리학적 지식이 없는 사람들도 홍수범람 모의 결과를 쉽게 이해하게 하며, 홍수범람 예보와 하천 범람으로 인한 재해의 방지대책을 신속하게 수립하는 데 도움을 주어 홍수범람으로 인한 자연재해를 경감하는 데 기여할 것이다.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • 농업과학연구
    • /
    • 제48권3호
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

LiDAR 고도자료와 LISFLOOD 모형을 이용한 홍수범람해석 (Analysis of Flood Inundation Using LiDAR and LISFLOOD Model)

  • 최천규;최윤석;김경탁
    • 한국지리정보학회지
    • /
    • 제16권4호
    • /
    • pp.1-15
    • /
    • 2013
  • 세계적으로 홍수로 인하여 인명과 재산의 피해가 발생하고 있다. 국내에서는 홍수피해를 줄이기 위하여 비구조물적 대책의 하나로 홍수범람지도를 작성하고 있으며, 홍수범람해석을 위한 다양한 모형이 연구되고 있다. 본 연구에서는 LiDAR 자료와 LISFLOOD 모형을 이용한 홍수범람해석을 수행하여 국내 하천에서의 적용성을 검토하고, 파제 시나리오에 의한 파제 위치별 범람해석 결과를 평가하였다. 범람해석 결과 최대 홍수범람면적에서는 HEC-RAS 모형에 의해 작성된 홍수범람도와 차이가 약 4% 미만으로 유사하였으며, 파제 시나리오에 의한 홍수범람해석에서는 시나리오 별로 약 0.2%~6.5%의 범람면적 차이를 나타내었다. 또한 파제 위치에 따라서 홍수범람 양상이 다르게 나타났으며, 제내지에서 범람류의 흐름방향과 하천 흐름방향의 관계에 따라 최대 홍수범람면적과 최대 침수심이 변화함을 확인할 수 있었다. 연구 결과 국내 하천에서 홍수범람해석시 LISFLOOD 모형의 적용이 가능하고, 다양한 범람상황을 고려한 홍수범람해석이 가능할 것으로 판단된다.

Assessing the Suitability of Satellite Precipitation Products for Flood Modeling in the Tonle Sap Lake Basin, Cambodia

  • Oudom Satia Huong;Xuan-Hien Le;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.176-176
    • /
    • 2023
  • The Tonle Sap is the richest and diverseness of freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition, the rapid development in the Tonle Sap Lake (TSL) Basin, and flood inundation may threaten the natural diversities and characteristics. The impacts of flood inundation in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Rainfall-Runoff-Inundation (RRI) model to quantify the potential magnitude and extent of the flooding. The RRI model is set up by using gauged rainfall data to simulate the information of river discharge and flood inundation of huge possible flood events. Moreover, two satellite precipitation products (SPPs), CHIRPS and GSMaP, within respectively spatial resolutions of 0.05° and 0.1°, are utilized as an input for the RRI model to simulate river discharge, flood depth, and flood extent for the great TSL Basin of Cambodia. This study used statistical indicators such as NSE, PBIAS, RSR, and R2 as crucial indices to evaluate the performance of the RRI model. Therefore, the findings of this study could provide promising guidance in hydrological modeling and the significant implications for flood risk management and disaster preparedness in the region.

  • PDF