• Title/Summary/Keyword: Flood mitigation

Search Result 312, Processing Time 0.031 seconds

Estimation of the Flash Flood Severity using Flash Flood Index (돌발홍수지수를 이용한 돌발홍수심도 산정)

  • Kim, Eung-Seok;Choi, Hyun-Il;Lee, Dong-Eui;Kang, Dong-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.125-131
    • /
    • 2009
  • The aim of this study is to quantify the severity of flash food for a study watershed in Korea by estimation of flash food index using flood runoff hydrograph following Bhaskar et. al (2000). As an extension of the previous research, we examine the relation between flash food index and rainfall intensity, rainfall duration, and total runoff, respectively. This study has estimated the flash food index through simulated flood hydrographs to investigate the relative severity of flash flood in an ungauged basin, Megok river basin for 31 flood events.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

Uncertainty of Evaluating Design Flood and Mitigation Plan at Downstream of Imjin River (감조하천 홍수위 계산의 불확실성과 저감 대안 - 임진강 하류를 대상으로)

  • Baek, Kyong Oh;Kwon, Hyek Won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • Compared with general rivers, fluctuations of the water level and the river bed are severe in the tidal river. In hydro-dynamic aspect, such fluctuation gives different river-bed data to us according to observing period. The time-dependent river-bed data and pre-estimation of the Manning's roughness coefficient which is the key factor of numerical modelling induces uncertainty of evaluating the design flood level. Thus it is necessary to pay more attention to calculate the flood level at tidal rivers than at general rivers. In this study, downstream of the Imjin River where is affected by tide of the West Sea selected as a study site. From the numerical modelling, it was shown that the unsteady simulation gave considerable mitigation of the water level from the starting point to 15 km upstream compared to the steady simulation. Either making a detention pond or optional dredging was not effective to mitigate the flood level at Gugok - Majung region where is located in the downstream of the Imjin River. Therefore, a more sophisticated approach is required to evaluate the design flood level estimation before constructive measures adopted in general rivers when establishing the flood control plan in a tidal river.

Alternatives Development for Basin-wide Flood Mitigation Planning: A Case Study of Yeongsan River Basin (유역치수계획을 위한 대안수립: 영산강 유역의 사례연구)

  • Yi, Choong-Sung;Shim, Myung-Pil;Lee, Sang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.507-516
    • /
    • 2010
  • The purpose of this study is to propose the alternative development method by means of determining the optimal project size from the economic viewpoint, improving the existing method depending on engineering aspects. To this end, this study defined the flood mitigation projects as the production activities carried out by inputs and outputs, and proposed the alternative development method on the basis of optimizing input and output combinations. This paper, as the case study of the proposed method, developed alternatives for the flood mitigation planning of Youngsan River Basin by determining the optimal project scale. As the result of determining optimal project size, the net benefit of the optimal alternative tended to be dependent on the net benefits of the large individual proposals. Due to such problem, the effect of relatively small individual proposals are underestimated and possibly be excluded from the optimal alternative, which may result in exclusion of the potential damaged regions protected by them from the flood mitigation project. Thus for the selective flood protection by region, individual proposals need to be categorized into the global measures and local measures according to the flood protection area.

Flood Monitoring and Assessment by Remote Sensing and GIS in China

  • Jiren, Li;Silong, Zhang;Sun, Chun-Peng
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.175-182
    • /
    • 2002
  • The paper introduces the application of flood monitoring and assessment by remote sensing and GIS in china and describes the frame of operational system for practical performance of flood disaster mitigation. In addition, The operational system for flood monitoring and assessment in RSTAC/ MWR and its application in the floods of 1998,1999 in china are introduced.

  • PDF

Calculation of Abnormallly Large Flood Discharge Amount Destroying the Stage Gaging Station (이상 호우에 의하여 붕괴된 수위국 지점의 홍수량 규모 결정)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.675-678
    • /
    • 2008
  • An abnormal storm by the typhoon of RUSA in 2002th year was broken out with tremendous flood demages and inundations on the basin of Chogangcheon located in the upper middle part of Guem river's upstream. This flood could not be engaged because it was so big that the stage engaging Songcheon station stuck to Songcheon bridge was destroyed by submerging. In this study the quantity of the flood was calculated by use of Manning's equation and suitable roughness coefficient was suggested.

  • PDF

Development and Application of Green Infrastructure Planning Framework for Improving Urban Water Cycle: Focused on Yeonje-Gu and Nam-Gu in Busan, Korea (도시물순환 개선을 위한 그린인프라 계획 프레임워크 개발 및 시범적용 - 부산시 연제구 및 남구를 대상으로 -)

  • Kang, JungEun;Lee, MoungJin;Koo, YouSeong;Cho, YeonHee
    • Journal of Environmental Policy
    • /
    • v.13 no.3
    • /
    • pp.43-73
    • /
    • 2014
  • Cities in Korea have rapidly urbanized and they are not well prepared for natural disasters which have been increased by climate change. In particular, they often struggle with urban flooding. Recently, green infrastructure has been emphasized as a critical strategy for flood mitigation in developed countries due to its capability to infiltrate water into the ground, provide the ability to absorb and store rainfall, and contribute to mitigating floods. However, in Korea, green infrastructure planning only focuses on esthetic functions or accessibility, and does not think how other functions such as flood mitigation, can be effectively realized. Based on this, we address this critical gap by suggesting the new green infrastructure planning framework for improving urban water cycle and maximizing flood mitigation capacity. This framework includes flood vulnerability assessment for identifying flood risk area and deciding suitable locations for green infrastructure. We propose the use of the combination of frequency ratio model and GIS for flood vulnerability assessment. The framework also includes the selection process of green infrastructure practices under local conditions such as geography, flood experience and finance. Finally, we applied this planning framework to the case study area, namely YeonJe-gu an Nam-gu in Busan. We expect this framework will be incorporated into green infrastructure spatial planning to provide effective decision making process regarding location and design of green infrastructure.

  • PDF

A Study on determining Flood Protection Elevation in Urban Area (도시지역 방어침수위 설정에 관한 연구)

  • Shin, Sang-Young;Lee, Yang-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.649-652
    • /
    • 2008
  • In urban area, flood risk is getting higher because of inland flood risk has grown up by changing rainfall intensity, rainfall pattern, changing land use and so on. Urban area is needed higher flood protection level to protect accumulated people, buildings and other infrastructures. However, even though former flood protection has focused on overflow from river, there is not a guide line for evaluating proper flood protection level. Thus, it is necessary to protect flood from inland flooding as well as overflow from river and need a proper method to evaluating flood protection level. This study present a method of determining flood protection elevation by using GIS tools for deciding proper flood protection level. The study result may contribute to urban flood protection measures in which inland flood risk increases.

  • PDF

A study on development of flood depth-damage functions focused on school buildings (학교건물에 대한 홍수 침수심별 손상함수 개발에 관한 연구)

  • Lee, Chang Hee;Kim, Sang Ho;Hwang, Shin Bum;Kim, Gil Ho
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.513-520
    • /
    • 2017
  • In order to analyze flood damage mitigation effects, it is necessary not only to analyze inundation areas and depth through hydraulic and hydrological analysis but also to estimate flood damages. Flood damages of structure and contents of buildings are generally analyzed according to the flood depth. In this study, we developed and applied flood depth-damage functions for the school buildings based on actual damage data. In addition, the development and modification procedure of flood depth-damage functions for school buildings is presented in this paper, and the developed damage functions are verified by comparing them with the existing method. It is expected that the process of developing and applying flood depth-damage functions presented in this study can be used in the cost benefit analysis of flood damage mitigation measures.