• Title/Summary/Keyword: Flood level

Search Result 755, Processing Time 0.031 seconds

Development and Assessment of Flow Nomograph for the Real-time Flood Forecasting in Cheonggye Stream (청계천 실시간 홍수예보를 위한 Flow Nomograph 개발 및 평가)

  • Bae, Deg-Hyo;Shim, Jae Bum;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1107-1119
    • /
    • 2012
  • The objectives of this study are to develop the flow nomograph for real-time flood forecasting and to assess its applicability in restored Cheonggye stream. The Cheonggye stream basin has the high impermeability and short concentration time and complicated hydrological characteristics. Therefore, the flood prediction method using runoff model is ineffective due to the limit of forecast. Flow nomograph which is able to forecast flood only with rainfall information. To set the forecast criteria of flow nomograph at selected flood forecast points and calculated criterion flood water level for each point, and in order to reflect various flood events set up simulated rainfall scenario and calculated rainfall intensity and rainfall duration time for each condition of rainfall. Besides, using a rating curve, determined scope of flood discharge following criterion flood water level and using SWMM model calculated flood discharge for each forecasting point. Using rainfall information following rainfall scenario calculated above and flood discharge following criterion flood water level developed flow nomograph and evaluated it by applying it to real flood event. As a result of performing this study, the applicability of flow nomograph to the basin of Cheonggye stream appeared to be high. In the future, it is reckoned to have high applicability as a method of prediction of flood of urban stream basin like Cheonggye stream.

Estimation of the Water Surface Slope by the Flood Discharge with River Bend Curvature (하천 만곡률과 홍수량에 따른 수면경사도 산정)

  • Choi, Han-Kyu;Lee, Mun-Hee;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.129-137
    • /
    • 2006
  • In this research, we made a one and two-dimensional analysis of numerical data collected from the bend curvature of a bended river section. According to the result from the numerical analysis, the inflow & output angle caused a water level deviation which increased with an increase of the flood discharge. From the water level deviation of our two-dimensional numerical model, we obtained the maximum slope of 6,67% when the inflow and output angle was 105 degrees and the flood discharge was 500 CMS. As for the right side, the differences with the one-dimensional numerical model were reduced when the angle was more than $90^{\circ}$. As for the left side the differences were reduced when the angle was more than $105^{\circ}$. For a river with more than 90 degrees bend curvature, a hydraulic experiment would be more appropriate than a numerical analysis.

  • PDF

A Physical Model Test of Flood Level Changes by the Vegetation on the Floodplain of Urban River (도시하천 둔치내 식생의 평면적 분포에 따른 홍수위 변화의 실험적 연구)

  • Jo, Hong-Je;Choe, Hyeon-Geun;Lee, Tae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.203-212
    • /
    • 2002
  • The purpose of this study was to examine the effect of vegetation on the flood plain in the Taewha river on the changes of flood level using a hydraulic physical model experiment. To simulate 9.0 km river, 1/300 horizontally and 1/72 vertically distorted model was used. The vegetation areas were divided by three sub -areas and the flood level changes were examined according to the locations of vegetation as well as the transverse Profile. As a result, the flood level changes were not significantly affected by the densely distributed vegetation. It was concluded that additional adjustable vegetation in urban river could make useful hydrophilic space.

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operation(III) - Pronagation of Flood Wave by Sluice Gate Operations - (영산호 운영을 위한 홍수예보모형의 개발(III) -배수갑문 조절에 의한 홍수파의 전달-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.2
    • /
    • pp.13.2-20
    • /
    • 1995
  • An water balance model was formulated to simulate the change in water levels at the estuary reservoir from sluice gate releases and the inflow hydrographs, and an one-di- mensional flood routing model was formulated to simulate temporal and spatial varia- tions of flood hydrographs along the estuarine river. Flow rates through sluice gates were calibrated with data from the estuary dam, and the results were used for a water balance model, which did a good job in predicting the water level fluctuations. The flood routing model which used the results from two hydrologic models and the water balance model simulated hydrographs that were in close agreement with the observed data. The flood forecasting model was found to be applicable to real-time forecasting of water level fluc- tuations with reasonable accuracies.

  • PDF

A Development of Real-time Flood Forecasting System for U-City (Ubiquitous 환경의 U-City 홍수예측시스템 개발)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-184
    • /
    • 2007
  • Up to now, a lot of houses, roads and other urban facilities have been damaged by natural disasters such as flash floods and landslides. It is reported that the size and frequency of disasters are growing greatly due to global warming. In order to mitigate such disaster, flood forecasting and alerting systems have been developed for the Han river, Geum river, Nak-dong river and Young-san river. These systems, however, do not help small municipal departments cope with the threat of flood. In this study, a real-time urban flood forecasting service (U-FFS) is developed for ubiquitous computing city which includes small river basins. A test bed is deployed at Tan-cheon in Gyeonggido to verify U-FFS. Wireless sensors such as rainfall gauge and water lever gauge are installed to develop hydrologic forecasting model and CCTV camera systems are also incorporated to capture high definition images of river basins. U-FFS is based on the ANFIS (Adaptive Neuro-Fuzzy Inference System) that is data-driven model and is characterized by its accuracy and adaptability. It is found that U-FFS can forecast the water level of outlet of river basin and provide real-time data through internet during heavy rain. It is revealed that U-FFS can predict the water level of 30 minutes and 1 hour later very accurately. Unlike other hydrologic forecasting model, this newly developed U-FFS has advantages such as its applicability and feasibility. Furthermore, it is expected that U-FFS presented in this study can be applied to ubiquitous computing city (U-City) and/or other cities which have suffered from flood damage for a long time.

  • PDF

Application of Flood Vulnerability Index for analyzing safety change of levee according to climate change (기후변화에 따른 제방의 안전성 영향 분석을 위한 제방홍수취약성지수의 적용)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.4
    • /
    • pp.293-299
    • /
    • 2018
  • In this study, a new technique for evaluating the flood vulnerability of river banks is proposed. For this purpose, flood quantities of the basin were estimated based on the future climate change scenarios and the infiltration stability was evaluated by analyzing the infiltration behavior using SEEP/W which is a 2D groundwater infiltration model of the levee. The size of the river levee was investigated. The size of river levee was investigated by selecting the target area. The safety factor of the levee was analyzed considering the current flood level of the levee and the flood level considering the climate change. The factor needed to analyze the levee vulnerability was derived. We analyzed the vulnerability of the levee considering the change of the levee level according to the climate change scenarios. Levee Flood Vulnerability Index (LFVI) were used to evaluate the vulnerability of the levee.

A Case Study on Development of Stormwater Retention and Infiltration Pond System (우수저류 및 침투연못 시스템개발 사례연구 - 우수 저류 및 침투 효과를 중심으로 -)

  • Lee, Jae Chul;Yoon, Yeo Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.52-61
    • /
    • 2003
  • This study was carried out to analyze the effects of stormwater retention and infiltration pond on reduction of flood peak and volume in a experimentally developed ecological pond. The experimental site has 542$m^2$ watershed area, 1,310mm yearly-averaged rainfall. And the area of the retention pond is 60$m^2$, the maximum water depth is 0.5m, the maximum and average storage is 15$m^3$and 9.3$m^3$d. And the area of infiltration pond is 58$m^2$, and the water depth varies 0.2m~0.5m. The monitoring system consists of one rainfall gage, one Parshall flume and acoustic water level gage, two rectangular weirs and acoustic water level gage for discharge gaging, and one data recording unit. Data from ten storm events in total, three storm events in year 2000 and seven storm events in year 2001, were collected. From the data the evaporation rate was achieved with the water balance equation, and the result shows 5.0mm/day in average. The result from the analysis of the effects on reduction of flood peak and volume, is that 14% reduction of flood volume and 15% reduction of flood peak in retention pond and 49% reduction of flood volume in infiltration pond.

Change of Hydraulic Characteristics in the Downstream Keum River after the Construction of Estruary Dam (금강하구둑 건설로 인한 금강하류부의 수리 특성 변화)

  • 박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.68-76
    • /
    • 1999
  • The purpose of the study was to investigated the change of hydraulic characteristics like water surface profile and rivered section in the down stream of Keum river after the construction of esturary dam. The effect of esturary dam on the flood control in the Keum river was recognized with the data of two flood events happened in July, 1987 before the construction and in August, 1995 after the construction of estuary dam. For example , duration time above the water level of the warning -flood was changed from 46.5 to 42.8 hours and duration time above the eater level of the danger-flood was changed from 24.7 to 19.8 hours at the Kyuam station. The time difference to reach the water level of the designated -flood between Kyuam and Kangkyung was changed from 3 hours in 1987 to 12 hours and 20 minutes in 1995. The water surface slope of river decreased 25.6% between estuary dam and Kangkyung and increased 16.5% between Kangkyung and Kyuam, and decreased 8.8% between Kyuam and Kongju. As the result, velocity was getting faster and river bed was scoured in the reach of Kangkyung and Kyuam, and velocity was getting slower and river bed was sedimented in the reach of Kangkyung and estury dam.

  • PDF

Determine the Length of the Side-Weir of Side-Weir Detention Basin Considering the Uncertainty of the Water Level in River (하천 수위 예측의 불확실성을 고려한 강변저류지 횡월류부 길이 결정 기법)

  • Kim, Seojun;Kim, Sanghyuk;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.673-683
    • /
    • 2015
  • The existing flood protection in rivers has shown the limitation due to the urbanization around rivers and the abnormal climate. Thus, the demand for the constructions of side-weir detention basin are being increased as a part of integrated watershed flood protection plan. It is necessary to estimate the quantitative flood-control effect for including the side-weir detention basin in flood-control measures. For the determination, it is required to reduce the uncertainty of the design factors which can affect the flood-control effect of side-weir detention basin. Among the factors, however, the water level in river always contains uncertainty. Therefore, the design method considering the uncertainty is required. For the reasons, the design method considering uncertainty of the water level in river is suggested in this study with using the length of side-weir which is relatively easy-determinable by designers. Therefore, it is examined how the variation of the length of side-weir can affect the flood-control effect, using HEC-RAS, and then the method to determine the side-weir length considering the uncertainty of the water level in river through results from analyses. Since the uncertainty of the water level in river can be taken into account in the suggested design method, it is evaluated that the design method is more effective to suggest the flood-control effect of the side-weir type detention basin with higher safety side.

Assessment on Flood Characteristics Changes Using Multi-GCMs Climate Scenario (Multi-GCMs의 기후시나리오를 이용한 홍수특성변화 평가)

  • Son, Kyung-Hwan;Lee, Byong-Ju;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.789-799
    • /
    • 2010
  • The objective of this study is to suggest an approach for estimating probability rainfall using climate scenario data based GCM and to analyze changes of flood characteristics like probability rainfall, flood quantile and flood water level under climate change. The study area is Namhan river basin. Probability rainfalls which is taken 1440 minutes duration and 100-year frequency are estimated by using IPCC SRES A2 climate change scenario for each time period (S0: 1971~2000; S1: 2011~2040; S2: 2041~2070; S3: 2071~2100). Flood quantiles are estimated for 17 subbasins and flood water level is analyzed in the main channel from the downstream of Chungju dam to the upstream of Paldang dam. Probability rainfalls, peak flow from flood quantile and water depth from flood water level have increase rate in the range of 13.0~15.1 % based S0 (142.1 mm), 29.1~33.5% based S0 ($20,708\;m^3/s$), 12.6~13.6% in each S1, S2 and S3 period, respectively.