DOI QR코드

DOI QR Code

Application of Flood Vulnerability Index for analyzing safety change of levee according to climate change

기후변화에 따른 제방의 안전성 영향 분석을 위한 제방홍수취약성지수의 적용

  • Lee, Hoo Sang (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jae Joon (Department of Civil Engineering, Kumoh National Institute of Technology)
  • 이후상 (금오공과대학교 토목공학과) ;
  • 이재준 (금오공과대학교 토목공학과)
  • Received : 2017.11.16
  • Accepted : 2018.01.11
  • Published : 2018.04.30

Abstract

In this study, a new technique for evaluating the flood vulnerability of river banks is proposed. For this purpose, flood quantities of the basin were estimated based on the future climate change scenarios and the infiltration stability was evaluated by analyzing the infiltration behavior using SEEP/W which is a 2D groundwater infiltration model of the levee. The size of the river levee was investigated. The size of river levee was investigated by selecting the target area. The safety factor of the levee was analyzed considering the current flood level of the levee and the flood level considering the climate change. The factor needed to analyze the levee vulnerability was derived. We analyzed the vulnerability of the levee considering the change of the levee level according to the climate change scenarios. Levee Flood Vulnerability Index (LFVI) were used to evaluate the vulnerability of the levee.

본 연구에서는 하천 제방에 대한 홍수취약성을 평가하는 새로운 기법을 기후변화에 따라 달라지는 하천의 수위변화를 고려하여 제방의 취약성 변화 정도를 파악해보고자 한다. 이를 위해 미래 기후변화 시나리오를 기반으로 대상유역의 홍수량을 산정하여 홍수위를 구하고 제방의 2차원 지하수침투 모형인 SEEP/W를 이용하여 침투거동을 분석함으로써 침투안정성을 평가하였다. 대상지역은 한강 본류 서울 구간으로 선정하여 대표 제방을 선정한 후, 대표 제방의 현재 계획홍수위와 기후변화를 고려한 홍수위를 고려하여 제방의 안전율을 분석하였다. 제방의 취약성 분석에 필요한 인자를 도출하고 이를 활용하여 기후변화 시나리오에 따른 제방의 수위변화를 고려한 제방의 취약성 분석을 실시하였으며 분석결과를 본 연구자가 기 개발한 제방홍수취약성지수(Levee Flood Vulnerability Index, LFVI) 값을 이용하여 제방의 취약성에 미치는 영향을 분석하였다.

Keywords

References

  1. Balica, S. F., Douben, N., and Wright, N. G. (2009). "Flood vulnerability indices at varying spatial scales." Water Science and Technology, Vol. 60, No. 10, pp. 2571-2580. https://doi.org/10.2166/wst.2009.183
  2. Cha, E, J., Kwon, H. J., and Kim, S. J. (2010). "2009 Typhoon Feature." Journal of Korea Meteorological Society, Vol. 2010, No. 4, pp. 9-10.
  3. Connor, R. F., and Hiroki, K. (2005). "Development of a method for assessing flood vulnerability." Water Science and Technology, Vol. 51, No. 5, pp. 61-68.
  4. Fell, R., Wan, C., Cyganiewicz, J., and Foster, M. (2003). "Time for development of internal erosion and piping in embankment dams." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 4, pp. 307-314. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
  5. Geo-Slope International Ltd (2004). Seepage modeling with SEEP/W 2004. Calgary, Alberta, Canada.
  6. Jung, E. S., and Lee, K. S. (2007). "Identifying spatial hazard ranking using multicriteria decision making techniques." Journal of Korea Water Resources Association, Vol. 40, No. 12, pp. 969-983. https://doi.org/10.3741/JKWRA.2007.40.12.969
  7. Jung, L. L., Lee, B. J., and Bea, D. H. (2009). "Parameter regionalization of semi-distributed runoff model using multivariate statistical analysis." Journal of Korea Water Resources Association, Vol. 42, No. 2, pp. 149-160. https://doi.org/10.3741/JKWRA.2009.42.2.149
  8. Kwon, H. H., Lima, C. H., and Kim, J. Y. (2016). "A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate." Journal of Hydrology, Vol. 540, pp. 744-756. https://doi.org/10.1016/j.jhydrol.2016.06.062
  9. KWRC (2013). Analysis of runoff characteristics due to climate change.
  10. Lee, M. H., Jung, L. L., and Bea, D. H. (2011). "Korean flood vulnerability assessment on climate change." Journal of Korea Water Resources Association, Vol. 44, No. 8, pp. 653-666. https://doi.org/10.3741/JKWRA.2011.44.8.653
  11. Ojha, C. S. P., Adrian, D. D., Ozkan, S., Sills, G. E., and Singh, V. P. (2001). "Role of sand boil formation in levee failure." Proceedings Congress - International Association of Hydraulic Engineering and Research, Vol. 29, No. 3, pp. 226-231.
  12. Rygel, L., O'sullivan, D., and Yarnal, B. (2006). "A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country." Mitigation and Adaptation Strategies for Global Change, Vol. 11, No. 3, pp. 741-764. https://doi.org/10.1007/s11027-006-0265-6
  13. Son, M. W., Sung, J. Y., Jung, E. S., and Jeon, G. S. (2011). "Development of flood vulnerability index considering climate change." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 231-248. https://doi.org/10.3741/JKWRA.2011.44.3.231
  14. Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., and Clarke, L. E. (2011). "RCP4.5: a pathway for stabilization of radiative forcing by 2100." Climatic Change, Vol. 109, No. 1-2, pp. 77-94. https://doi.org/10.1007/s10584-011-0151-4
  15. USACE (2009). Guidlines for landsacpe planting and vegetation management at levees, floodwalls, embankment dams, and appurtenant structures.
  16. USACE (2010). USACE process for the National Flood Insurance Program (NFIP) levee system evaluation.
  17. Watson, J. (1996). "Integrated climate management." Proceedings Washington State Horticultural Association, Vol. 91, pp. 307-310.