• Title/Summary/Keyword: Flood disaster

Search Result 620, Processing Time 0.025 seconds

A Two-dimensional Hydraulic Analysis Considering the Influence of River Inflow and Harbor Gate in the Bay (Harbor Gate와 유입하천의 영향을 고려한 만내의 2차원 수리해석)

  • Lee, Jae Joon;Lee, Hoo Sang;Shim, Jae Sol;Yoon, Jong Ju
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • In this study, when seawall or harbor gate is installed for coastal disaster prevention, a two-dimensional water analysis in the bay is carried out to consider the flood amount of river inflow and effect of harbor gate. The Yeongsan river and the port Mokpo area are selcected for the study region. Then, by analyzing the hydraulic characteristics of flood flow of the Yeongsan river, we analysed the compatibility of the results in the two-dimensional hydrodynamic model. A tw-odimensional water analysis were conducted for the four cases considering whether a harbor gate is installed or not, and whether the inland water boundary condition is considered or not, also with open sea boundary condition. The results of the two-dimensional water analysis shows that water level change near the port Mokpo area is mainly caused by the discharge of the estuary barrage of the Yeongsan river because the harbor gate was installed. In addition, it is revealed that the volume of reservoir created by the harbor gate and the estuary barrage is too much small compared to the volume of the discharge from the Yeongsan river. Therefore, when the harbor gate is installed in the open sea, we concluded that a flexible management between the harbor gate and the estuary barrage of the Yeongsan river is required. A initial water level of the bay and outflow from the harbor gate are proposed for disaster prevention in the coastal area of port Mokpo.

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화의 사회경제적 영향평가 방법론 비교분석과 물관리 부문 적용 필요성에 관한연구)

  • Chee, Hee Mun;Park, Doo Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Although it is uncertain that the cause of changed pattern of the natural disaster related to water (i.e. flood and drought) is due to excessive carbon dioxide yielded from economic activity or the increased number of sunspots, it is apparent that there have been unusual climate change that directly affects the water resource management. Due to such a frequent unusual weather activities, there have been increased natural disaster and the most direct and major reason is considered as climate change. As we see, the climate change necessarily causes social costs. Especially, the effects on the water resource due to flood and drought take the considerable part of such costs. Therefore, this study is basic work to develop a new economic analysis technique to be used in pursuing appropriate adaptation project in field of the amount of cost damage through analysis of the effects of the climate change on the water resource. The models appeared in many reports for cost assessment of climate change were various (e.g., PAGE, DICE, AIM, IMAGE, MERGE, and etc.) and this report summarizes general characteristics of each model. To assess the effects of climate change of the water management, we defined the field of the water management on climate change. The results help post-study in field of the climate change's social-economic effect assessment, can be employed for the prioritizing process of the national fund's investment.

  • PDF

Flood Runoff Computation for Mountainous Small Basins using WMS Model (WMS 모형을 활용한 산지 소하천 유역의 유출량 산정)

  • Chang, Hyung Joon;Lee, Jung Young;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.9-15
    • /
    • 2021
  • The frequency of flash floods in mountainous areas is increasing due to the abnormal weather that occurs increasingly in the recent, and it causes human and material damages is increasing. Various plans for disaster mitigation have been established, but artificial plans such as raising embankment and dredging operation are inappropriate for valleys and rivers in national parks that prioritize nature protection. In this study, flood risk assessment was conducted for Gyeryongsan National Park in Korea using the WMS (Watershed Modeling System)which is rainfall runoff model for valleys and rivers in the catchment. As the result, it was simulated that it is flooding in three sub-catchments (Jusukgol, Sutonggol, Dinghaksa) of a total in Gyeryongsan National Park when rainfall over the 50 years return period occurs, and it was confirmed that the risk of trails and facilities what visitors are using was high. The risk of trails in national parks was quantitatively presented through the results of this study, and we intend to present the safe management guidelines of national parks in the future.

Integrated Logical Model Based on Sensor and Guidance Light Networks for Fire Evacuation (화재 대피 유도를 위한 센서 및 유도등 네트워크 기반의 통합 논리 모델)

  • Boo, Jun-Pil;Kim, Do-Hyeun;Park, Dong-Gook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.109-114
    • /
    • 2009
  • At the present time, buildings are designed higher and more complex than ever before. Therefore the potential disasters are happened such as fire, power outage, earthquake, flood, hurricanes. Their disasters require people inside buildings to be evacuated as soon as possible. This paper presents a new disaster evacuation guidance concept of inner buildings, whiche aims at integrated the constructing of a sensor network and a guidance light networks in order to provide a quick detection of disasters and accurate evacuation guidance based on indoor geo-information, and sends these instructions to people. In this paper, we present the integrated logical model based on sensor and guidance light networks for the fire disaster management in inner building using our concept. And we verify proposed logical model according to experiments with visualization and operations on map.

  • PDF

Development of Rivers Management system to Decrease flood Disaster using GIS (GIS 기반의 홍수 피해 감소를 위한 하천관리 시스템 개발)

  • Jeong, In-Ju;Park, Sang-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.35-40
    • /
    • 2003
  • In these days, damages from localized heavy rain or typhoon are increase and people are making constant effort to work out countermeasures. Especially, by apply GIS with prompt extraction of information and objective analysis, we could demonstrate more effectively. For that reason, in this research we make the connection between rainfall-runoff model and HEC-RAS which calculate automatically and inquire out the dangerous zone easier way by describing the result with the connection between the Map Object and MFC. Most of all, this research will be very useful to forecast and prepare the disaster because it could plot plane figures, longitudinal sections and cross sections at the same time to help understand the damaged situation.

  • PDF

Effectiveness Analysis of Flood Control by Wetland Constructions (습지조성을 통한 홍수조절 효과 분석)

  • Kim, Jung-Wook;Jung, Jae-Won;Choi, Young-Joo;Kim, Hung-Soo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.223-225
    • /
    • 2016
  • 최근 기후변화 및 도시화의 영향으로 홍수와 가뭄과 같은 자연재난이 점점 심화되고 있다. 습지는 유속과 수위를 낮추는 홍수조절 효과가 있으며 가뭄시에는 물을 저장하는 역할을 하여, 인공습지의 조성은 심각해지는 홍수 및 가뭄에 해결방안으로 활용될 수 있다. 기존의 인공습지에 관한 연구는 식생과 수질정화기능과 종 다양성 등 생태적 기능에 관한 연구가 주로 이루어져왔으며, 인공습지의 홍수조절 효과에 관한 연구는 미비한 실정이다. 따라서, 본 연구에서는 경안천 유역에 인공습지 조성에 따른 수문학적 홍수저감효과를 분석하였다. 이를 위해 수리모형인 HEC-RAS를 통하여 가상의 인공습지를 모형화 하여 인공습지 조성 전 후에 대한 홍수위를 비교 분석하였다. 또한 홍수범람을 모의하여 대상유역의 침수심 및 침수면적을 산정하고 이를 다차원홍수피해액산정법을 통하여 인공습지 조성 전 후에 대한 홍수피해액을 추정하였다. 본 연구결과를 바탕으로 인공습지 조성 사업 시 사업의 경제적 타당성을 평가하며, 인공습지 설계의 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Large Scale Rainfall-runoff Analysis Using SWAT Model: Case Study: Mekong River Basin (SWAT 모형을 이용한 대유역 강우-유출해석: 메콩강 유역을 중심으로)

  • Lee, Dae Eop;Yu, Wan Sik;Lee, Gi Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.47-57
    • /
    • 2018
  • This study implemented the rainfall-runoff analysis of the Mekong River basin using the SWAT (Soil and Water Assessment Tool). The runoff analysis was simulated for 2000~2007, and 11 parameters were calibrated using the SUFI-2 (Sequential Uncertainty Fitting-version 2) algorithm of SWAT-CUP (Calibration and Uncertainty Program). As a result of analyzing optimal parameters and sensitivity analysis for 6 cases, the parameter ALPHA_BF was found to be the most sensitive. The reproducibility of the rainfall-runoff results decreased with increasing number of stations used for parameter calibration. The rainfall-runoff simulation results of Case 6 showed that the RMSE of Nong Khai and Kratie stations were 0.97 and 0.9, respectively, and the runoff patterns were relatively accurately simulated. The runoff patterns of Mukdahan and Khong Chaim stations were underestimated during the flood season from 2004 to 2005 but it was acceptable in terms of the overall runoff pattern. These results suggest that the combination of SWAT and SWAT-CUP models is applicable to very large watersheds such as the Mekong for rainfall-runoff simulation, but further studies are needed to reduce the range of modeling uncertainty.

Estimation of Design Rainfall Based on Climate Change Scenario in Jeju Island (기후변화 시나리오를 고려한 제주도 확률강우량 산정)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul;Yang, Won-Seok
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • As occurrence of gradually increasing extreme temperature events in Jeju Island, a hybrid downscaling technique that simultaneously applies by dynamical method and statistical method has implemented on design rainfall in order to reduce flood damages from severe storms and typhoons.As a result of computation, Case 1 shows a strong tendency to excessively compute rainfall, which is continuously increasing. While Case 2 showed similar trend as Case 1, low design rainfall has computed by rainfall in A1B scenario. Based on the design rainfall computation method mainly used in Preventive Disaster System through Pre-disaster Effect Examination System and Basic Plan for River of Jeju Island which are considering climatic change for selecting 50-year and 100-year frequencies. Case 3 selecting for Jeju rain gage station and Case 1 for Seogwipo rain gage station. The results were different for each rain gage station because of difference in rainfall characteristics according to recent climatic change, and the risk of currently known design rainfall can be increased in near future.

Estimation of Probable Precipitation considering Altitude in the Jeju Islands (제주도의 고도를 고려한 확률강우량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Jung, Woo-Yul;Yang, Se-Chang
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.595-603
    • /
    • 2014
  • Jeju Island, a volcanic island, is the region that shows the biggest rainfall and has a big elevation-specific deviation of precipitation, but Jeju Island River Maintenance Plan doesn't reflect the characteristics of Jeju Island as it only calculates probable precipitation from four weather stations with elevation less than 100m. Therefore, this study uses AWS observational data in four Jeju Island weather stations and other regions to calculate location-specific probable precipitation, review the elevation-probable precipitation correlation in southern and northern regions, and create a probable precipitation map for all regions of Jeju Island, in order to produce better outcomes. This study is expected to be the most basic data to establish a safe Jeju island from flood disaster in preparation for the future climate changes and widely used for Jejudo Basin Dimension Planning, River Maintenance Plan, Pre-Disaster Impact Review, etc.

Development of Rainfall-Flood Damage Estimation Function using Nonlinear Regression Equation (비선형 회귀식을 이용한 강우-홍수피해액 추정 함수 개발)

  • Eo, Gyu;Kim, Kyung-Tae;Kim, Yon-Soo;Lee, Jongso;Kim, Hung-Soo
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.259-260
    • /
    • 2015
  • 재해가 발생하기 전에 피해규모와 이에 따른 영향 및 피해액을 신속하게 추정하는 것은 효율적인 재난 관리를 하는데 있어 중요하고, 더불어 정책결정자들이 의사결정을 할 때 도움이 될 수 있다. 하지만 기존의 연구는 단순 재해 피해발생 후에 그 피해액 혹은 복구액을 산정하는 수준이며, 현재 피해액 추정에 대한 연구는 전무 하며 그 기술개발에 또한 초기단계에 있다. 이에 피해액 추정에 대한 연구가 시급한 실정이다. 실질적으로 자연재해 정보에 대한 수요가 급증하고 있는 반면에 체계적이고 일관된 통계기반의 정보체계는 미흡하다. 이에 국가에서도 재해에 대한 피해액 및 복구비 산정 등 예산편성에 있어 큰 어려움을 겪고 있다. 기존통계 방식에 대한 개선의 필요성 인식과 더불어 본 연구의 목적은 재해 발생 전에 그 피해규모와 영향을 고려하여 이에 따른 피해액을 신속하게 추정하기 위함에 있다. 본 연구에서는 비선형 회귀식을 이용하여 강우-홍수피해액에 대한 함수를 제시하고자 한다.

  • PDF