• Title/Summary/Keyword: Flood Information

Search Result 758, Processing Time 0.032 seconds

Production of Flood Expectation Map in the Reclaimed Land Using 3-D Spatial Information (3차원 공간정보를 이용한 해안 매립지역 침수예상도 제작)

  • Lee, Jae-One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.97-102
    • /
    • 2007
  • Recently, coastal damage according to the natural disaster like storm-surge, overflowing of the sea has been massively increased. In case of earth fill at the seaside, there are a lot of weak areas of the natural disaster and it has also high possibility that a large disaster happens. Thus flood expectation map in the reclaimed land using 3D spatial information was produced in this study. The area around Myungji, Kangsugu, Busan which was made with the large scale earth fils at the seaside was designated as a study area. Observation of both costal datum and ground height using the tidal date and field surveying dates was conducted. Terrain model using the GIS program was produced and than 3D building model was produced using 3D MAX. It was shown that there are possibility more than 50% if over 4.5m storm-surge is happening, as a result of calculating the virtual flooded area on the produced cartographic map.

  • PDF

A Study on the Production of Flooding Maps in Small Stream (소하천 홍수범람지도 제작에 관한 연구)

  • Lee, Dong Hyeok;Jun, Kye Won;Kim, Il Dong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.51-59
    • /
    • 2021
  • Due to recent climate change, the flood damage is becoming larger due to the development of localized heavy rains. 2020.12 The Ministry of Environment provides 100-year flood flood map, but in the case of small rivers, river structures are designed at 50-80 years frequency, making it difficult to predict damage and provide evacuation information. This study prepared flood map of Donamcheon district in Geumnam-myeon, Sejong Special Self-Governing Province, which is a small stream and habitual flood zone. The flood level was calculated using HEC-RAS and the flood area was visualized through HEC-GeoRAS. The analysis results showed that property damage such as special crops and roads occurred during the 30-80 year frequency rainfall, and it affected private houses such as general residential areas and public land when the frequency occurred for 100 years. The results of the comparison and analysis of the flood map provided by the Ministry of Environment and the results of the HEC-GeoRAS simulation showed that the flood map provided by the Ministry of Environment did not consider small streams. Further studies on flood flood maps considering the large and small stream are needed in the future.

Development of regression functions for human and economic flood damage assessments in the metropolises (대도시에서의 인적·물적 홍수피해 추정을 위한 회귀함수 개발)

  • Lim, Yeon Taek;Lee, Jong Seok;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1119-1130
    • /
    • 2020
  • Flood disasters have been recently increasing worldwide due to climate change and extreme weather events. Since flood damage recovery has been conducted as a common coping strategy to flood disasters in the Republic of Korea, it is necessary to predict the regional flood damage costs by rainfall characteristics for a preventative measure to flood damage. Therefore, the purpose of this study is to present the regression functions for human and economic flood damage assessments for the 7 metropolises in the Republic of Korea. A comprehensive regression analysis was performed through the total 48 simple regression models on the two types of flood damage records for human and economic costs over the past two decades from 1998 to 2017 using the four kinds of nonlinear equations with each of the six rainfall variables. The damage assessment functions for each metropolis were finally selected by the evaluation of the regression results with the coefficient of determination and the statistical significance test, and then used for the human and economic flood damage assessments for 100-year rainfall in the 7 metropolises. The results of this study are expected to provide the basic information on flood damage cost assessments for flood damage mitigation measures.

The Simulation of Flood Inundation of Namdae Stream with GIS-based FLUMEN model (GIS 기반 FLUMEN 모형을 이용한 남대천 홍수범람 모의실험)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2010
  • This study simulated flood inundation each frequency rainfall using GIS spatial information and FLUMEN model for part of Muju-Namdae Stream. To create geomorphology for the analysis of flood inundation, Triangle Irregular Network(TIN) was constructed using GIS spatial interpolation method based on digital topographic map and river profile data, unique data source to represent real topography of the river areas. And also flood inundation was operated according to the levee collapse to consider extremely flood damage scenarios. As the analysis of result, the inundation area in the left levee collapse showed more high as 3.13, 3.69, and 4.17 times comparing with one of right levee for 50, 100, and 200 year frequency rainfall and showed 1.00, 2.15, and 3.34 times comparing with one of right levee in the inundation depth with over 1.0 meter, which can cause casualties. As the analysis of inundation area of the inundation depth with over 1.0 meter, which can cause casualties in left levee collapse, it increased more high as 263% and 473% when 50 year frequency change into 100 and 200 year frequency. Also As the analysis of inundation area of the inundation depth with over 1.0 meter in right levee collapse, it increased high as 123% and 142% when 50 year frequency change into 100 and 200 year frequency. Especially, the inundation area of the inundation depth with 3.0~3.5m showed more high as 263% and 489% when 50 year frequency change into 100 and 200 year frequency. It is expected that flood inundation map of this paper could be important decision making data to establish land use planning and water treatment measures.

Establishment and Application of Flood Forecasting System for Waterfront Belt in Nakdong River Basin for the Prediction of Lowland Inundation of River. (하천구역내 저지대 침수예측을 위한 낙동강 친수지구 홍수예측체계 구축 및 적용)

  • Kim, Taehyung;Kwak, Jaewon;Lee, Jonghyun;Kim, Keuksoo;Choi, Kyuhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.294-294
    • /
    • 2019
  • The system for predicting flood of river at Flood Control Office is made up of a rainfall-runoff model and FLDWAV model. This system is mainly operating to predict the excess of the flood watch or warning level at flood forecast points. As the demand for information of the management and operation of riverside, which is being used as a waterfront area such as parks, camping sites, and bike paths, high-level forecasts of watch and warning at certain points are required as well as production of lowland flood forecast information that is used as a waterfront within the river. In this study, a technology to produce flood forecast information in lowland areas of the river used as a waterfront was developed. Based on the results of the 1D hydraulic analysis, a model for performing spatial operations based on high resolution grid was constructed. A model was constructed for Andong district, and the inundation conditions and level were analyzed through a virtual outflow scenarios of Andong and Imha Dam.

  • PDF

River Water Environmental Management System by Construction of Early Warning System - A Comparative Study on Korea and Japan.

  • Kang Sang-Hyeok
    • Spatial Information Research
    • /
    • v.12 no.4 s.31
    • /
    • pp.329-337
    • /
    • 2004
  • Typhoons Rusa (2002) and Maemi (2003) struck Kangwon and Gyeongnam provinces of Korea and caused the most extensive flood damages ever blown since the foundation of Meteorological Agency in 1927. Many cities are inundated, crippling the critical facilities and resulting In high irreversible losses of human lives, and damages to infrastructures. These kinds of flood damages were among the worst natural disaster that Korean people experienced. In order to reduce flood damage, it is necessary to investigate how to use the information of water environment during the rainfall disaster. Therefore as per the result of this study, we have suggested few but effective countermeasures for controlling the flooding damages and also the advancements in the areas of disaster information dissemination and early warning system for water environmental management by using optical fiber system in Japan are discussed.

  • PDF

Use of Climate Information for Improving Extended Streamflow Prediction in Korea (중장기 유량예측 향상을 위한 국내 기후정보의 이용)

  • Lee Jae-Kyoung;Kim Young-Oh;Jeong Dae-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.755-766
    • /
    • 2006
  • Since the accuracy of climate forecast information has improved from better understanding of the climatic system, particularly, from the better understanding of ENSO and the improvement in meteorological models, the forecasted climate information is becoming the important clue for streamflow prediction. This study investigated the available climate forecast information to improve the extended streamflow prediction in Korea, such as MIMI(Monthly Industrial Meteorological Information) and GDAPS(Global Data Assimilation and Prediction) and measured their accuracies. Both MIMI and the 10-day forecast of GDAPS were superior to a naive forecasts and peformed better for the flood season than for the dry season, thus it was proved that such climate forecasts would be valuable for the flood season. This study then forecasted the monthly inflows to Chungju Dam by using MIMI and GDAPS. For MIMI, we compared three cases: All, Intersection, Union. The accuracies of all three cases are better than the naive forecast and especially, Extended Streamflow Predictions(ESPs) with the Intersection and with Union scenarios were superior to that with the All scenarios for the flood season. For GDAPS, the 10-day ahead streamflow prediction also has the better accuracy for the flood season than for the dry season. Therefore, this study proved that using the climate information such as MIMI and GDAPS to reduce the meteorologic uncertainty can improve the accuracy of the extended streamflow prediction for the flood season.

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

A Study on the Cross Section Insurance to Provide for the Extraordinary Flood for the Reservoir of the Temporary Division Tunnel (가배수 터널을 이용한 이상홍수 대비 단면확보에 관한 연구)

  • Baek, Won-Hyun;Park, Ki-Bum;Jee, Hong-Kee
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.733-741
    • /
    • 2008
  • The object of this study is the safety insurance of the dam to provide for the extraordinary flood. The safety insurance of the reservoir was taken by the preparatory discharge using the temporary division tunnel used during the reservoir construction. In this study, the Sungju reservoir was simulated. The existing discharge facilities of the intake tower of the Sungju reservoir could nat have influence on the flood control. When the Sungju reservoir operated to begin preparatory discharge for 48 hrs by the temporary diversion tunnel that have discharge of an 20-years frequency, the water level was lowered about 20 cm. When the Sungju reservoir operated to begin the continuous discharge after the preparatory discharge, the water level was lowered over 1m but the downstream at risk was caused by the resulted. If it is possible to operate to begin the preparatory discharge of the reservoir for 24 hrs by the temporary diversion tunnel, that will improve the flood control faculty of the reservoir without other hydraulic structure and safety of the Sungju reservoir will be higher.

A Study on Development of Flood Vulnerability Evaluation Indicators for Sewage Treatment Plant (환경시설물 대상 홍수취약성 평가지표 개발에 관한 연구 - 하수처리장을 중심으로 -)

  • Roh, Jae-Deok;Han, Ji-Hee;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.110-118
    • /
    • 2020
  • This study developed a evaluation indicators on environmental facilities highly vulnerable to flood damage from quantitative and qualitative perspectives in order to reinforce the ability or preemptive disaster prevention. At first, this study classified the facilities into structural factor and non-structural factor. The structural factor consists of 11 indicators, the non-structural factor consists of 8 internal indicators and 6 external indicators. This study is expected to be prepared for flood damage by evaluating flood vulnerability of environmental facilities.