• Title/Summary/Keyword: Flood/Ebb

Search Result 156, Processing Time 0.024 seconds

Spread Patterns of Thermal Effluent Discharged From Young-Kwang Nuclear Power Plant Using Remote Sensing Data

  • Han J. G.;Yeon Y. K.;Chi K. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.331-335
    • /
    • 2004
  • This study is focused to analyze the movement of thermal effluent dischargeed from nuclear power plant by season, ebb and flow, and before and after foundation of tide embankment using thermal infrared band image of 28 scenes observed from Landsat from 1987 to 2004, which is the early stage of operation of young-kwang nuclear power plant. In diffusion of thermal effluent discharge by seasons, spring and summer is spreading further than autumn and winter. It is considered to distribute widely mixed with thermal effluent discharge and hot water, which is distributed naturally along the seaside. It is known the fact that tidal currents control the direction of diffusion of thermal effluent discharge by the change of ebb and flow. Namely, it is distributed widely on the Southwest direction along the seaside by tidal currents when ebb and, it is moved widely on the Northeast direction along the seaside by tidal current when flood. However, in the early stage of flood current, the mainstream of thermal effluent discharge is spread on Southwest direction and, the direction is changed on North­east way when the latter period of flood current. Similarly, in the early stage of ebb current, the mainstream of thermal effluent discharge is spread on Northeast direction and, the direction is changed on Southwest direction when the latter period of ebb current. As the result of comparing to the diffusion pattern of thermal effluent discharge before and after the foundation of seawall, discharged thermal effluent from the drain of plant by the foundation of dike is shown as curved circle pattern on Northeast to West direction from the ending portion of the seawall.

  • PDF

Change in Abundance of Coilia spp. Larvae by the Tidal Cycle in the Han River Estuary, Korea (한강하구에서 조석주기에 따른 웅어속 자치어의 출현량 변동)

  • Kim, Ji-Hye;Song, Tae-Yoon;Kim, Byung-Gi;Kim, Byung-Pyo;Han, Kyung-Nam
    • Korean Journal of Ichthyology
    • /
    • v.28 no.3
    • /
    • pp.192-199
    • /
    • 2016
  • The Seokmo and Yeomha channels are representative areas of high tidal energy in the Han River estuary. Surveys of environmental variables and abundance of Coilia spp. larvae, an anadromous fish, were carried out following the tidal cycle in August 2007 and August 2008. It was found that mean water temperature varied by <$1^{\circ}C$ across flood and ebb tides. A clear difference in salinity was observed between tides, with a high of 15.1 psu during flood tide, and a low of 0.8 psu during ebb tide. Coilia spp. larvae were significantly more abundant during the ebb tide than the flood tide (p<0.05). Since Coilia spp. larvae are anadromous fish, it seems that they use the ebb tide as a Selective tidal stream transport (STST) for horizontal movement in order to settle in the estuary (cultivation area), following hatching in the upper/middle courses of the Han River. A high percentage of larvae with improved swimming ability (measuring ${\geq}13.6mm$ in length) was observed during the ebb tide.

Sandy Sediment Transport Mechanism on Tidal Sand Bodies, West Coast of Korea (해양(조수환경) 사립퇴적물의 이동기작에 관한 연구 - 한국 서해 만경강.동진강 하구 해역 -)

  • Yong Ahn Park;Hyo Jin Kang;Y.I. Song
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.33-45
    • /
    • 1991
  • Sand bars associated with strong tidal currents are well developed in the subtidal zone near the Kokunsan islands. Tidal currents measured at sand bar in the area show an asymmetry in magnitude between flood and ebb currents. At the southern flank of the sand bar the currents are flood-dominant whereas the currents are ebb-dominant at the northern flank. The asymmetry is more distinctive as the currents become stronger during spring tide. Moreover, the flood-dominance along the southern flank is stronger than the ebb-dominance along the northern flank. Thus the flood current is more affective to the sand bar. The sandy bottom sediment is mostly transported as bedload by the tidal currents. The magnitude asymmetry of the tidal currents results in a net sediment movement in one direction. The direction is onshore in the south and offshore in the north, which may result in a net counterlookwise rotation of the sands around the sand bar. However, the sand bar may migrate towards onshore due to the more affective flood current in the south. The irregular V-shaped outline of the sand bar in the south also seem to reflect the strong effect of flood current.

  • PDF

Numerical Modelling on Hydrodynamics and Diffusion in Suyeong Bay (수영만의 해수순환 및 확산에 관한 수치모델링)

  • JUNG Yeon-Cheol;YOA Suk-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 1992
  • The water-quality control for coastal waters is continuously required in view point of the environmental protection. The purpose of this study is to simulate the hydrodynamic process and the dispersion phenomena of several pollutants in Suyeong Bay, Pusan. The present study employs the depth-averaged 2-dimensional model for nemerical simulation of the hydrodynamics and diffusion. The nemerical solution is obtained by ADI(Altenating Direction Implicit) scheme which is frequently used for tidal current and diffusion computations in the coastal zone. To verify the nunlerical results, the field observations of various water quality parameters such as COD, SS and nutrients were performed during the spring tide. In the results of this study, the computed tidal currents show the clockwise flows for ebb tide and counter-clockwise flows for flood tide. In comparison with the water-qualities in ebb tide and flood tide, there seems to be slightly deteriorated in ebb tide and especially near the estuary of Suyeong River. In flood tide, however, the water-quality near Kwangan Beach is deteriorated. The computed distributions of COD and SS are in god agreements with the observed ones, while those of $PO_4\;^{3-}-P\;and\;NO_3\;^--N$ show slight differences due to the complex transformation processes.

  • PDF

Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea (여자만 서수도 해역의 조류 및 조석평균류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

Seasonal Variations of Chemical Composition of the Estuary Water in Guang Yang Inlet from Mar. 1961 to Feb. 1962 (蟾津江 河口 干潟地 水質의 年間變化)

  • Won, Chong-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.176-197
    • /
    • 1962
  • Seasonal variations of chemical constituents of estuarine water at a definite station of the tidal flat in Guang Yang inlet have been determined for two days a month. The range and mean of the annual variations are as follows:Tidal variations through a year are as follows:1. Although the tidal value of pH is almost constant during one tidal cycle, it raises abruptly 0.1-0.2 intervals of pH value during the first period of flood.2. The lower values of chlorinity, magnesium and calcium contents have been determined the nearer the slack after ebb, and slightly higher during the first period of flood tide than the last of ebb. The tidal change of calcium contents is more remarkable than of magnesium.3. The higher per cent saturation values of dissolved oxygen, sometimes higher than 100 per cent, re determined the nearer the slack after ebb.4. The total nitrogen contents, relatively poor, varies accidentally during one tidal cycle, whereas phosphate-P and silicate-Si are rich at the slack after ebb and increase proportionally to the mixing percentage of fresh water. The average values, 52.2 and 18.5 of Si/P and N/P are greater than of the normal.5. The acid soluble iron contents, lower in winter than in summer, is also varies accidentally during one tidal cycle and the magnitude of the variation is large.6. The chemical composition considered from the value of Ca/Cl or Mg/Cl of estuarine water varies according to the chlorinity even at the high chlorinity of 18-19%.

  • PDF

Suspended Sediment Budget in Gwangyang Bay through the Yeosu Sound (여수 해만을 통한 광양만의 부유퇴적물 수지균형)

  • KIM Dae-Choul;KANG Hyo-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 1991
  • Suspended sediment budget in Gwangyang Bay was investigated using the data of suspended sediment concentration and vertical distribution of tidal currents at the mouth of the bay in the Yeosu Sound (Yeosu Haeman) . At the mouth of the bay suspended sediment concentration shows much higher value of approximately 17.80mg/l on the average near the bottom than the concentration near the surface where the average is 4.7mg/l. Tidal currents also show an asymmetry in magnitude between flood and ebb. Near the surface ebb is stronger than flood, while flood is stronger than ebb near the bottom. Due to the higher concentration and stronger flood current near the bottom, transport of suspended sediment near the bottom plays a major role to the sediment budget in the bay, and the bay is in net-depositional environment. The western part of the bay seems to gain the suspended sediment of approximately $5.66\times10^8g/day$, which corresponds to a sedimentation rate of about 1.15m/1,000years.

  • PDF

TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX (온산공단 부근의 해양오염물질 이동)

  • CHANG Sun-duck;LEE Jong-Sub;HAN Kyeong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.151-162
    • /
    • 1980
  • To clarify the dispersion of pollutants introduced in the coastal region, a series of current measurements, the drogue and drift bottle experiments as well as the dye diffusion experiments were carried out in Onsan Bay and in the coastal waters of Ubong-ri near Ulsan. In the southeastern coastal region of Korean peninsula, that is, in the outside of Onsan Bay, the flood tidal current flows south-south-westward, and the ebb current flows north-north-eastward at a maximum speed of 1.0-1.1 knots at spring tide. In an inlet south of Cape Ubong, an anticyclonic eddy of 1 km in diameter is usually formed during both flood and ebb flows. The tidal current predominates in Onsan Bay at around spring tide. The maximum speed around spring tide was observed to be approximately 0.14 knot, while it was slower than 0.1 knot and variable at neap tide when the wind drift current played an important role. The flood tidal current flows westward while the ebb flow flows eastward in the northern region of the bay. The flood tidal current in the southern region of the bay flows west-north-westward, while the ebb current east-north-eastward. Wind drift currents in the coastal region of southern Korea are generally deduced to be southward in winter, the monthly mean speed being approximately 0.1 knot. Dye solution released at the northwestern corner in Onsan Bay was transported by eastward ebb tidal current toward the mouth of the bay dispersing by the wind. The apparent diffusion coefficient at 150 minutes after release in the bay was calculated to be $4.4\times10^4\;cm^2.sec^{-1}$, whereas that in the anticyclonic eddy was more or less smaller.

  • PDF

The Circulation in Kwang Yang Bay (광양만의 해수유동에 관하여)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 1976
  • A series of physical oceanographic investigations of the circulation in the Kwang Bay' were carried out seven times from May 1974 to May 1975 every other month. The average water transports through the southern entrance of the' Kwang Yang Bay were approximately $1,014{\times}I0^6m^3$/half-tide in ebb current and $278{\times}10^6m^3$$405.6{\times}I0^6m^34/half-tide in ebb current, and $282{\times}10^6m^3 $/half-tide in flood current, at the maximum current intensity. The water from Seomjin River flows into the bay at an annual average rate of $84{\times}I0^6m^3$/half-tide, the rate being fluctuated from month to month from $6.0\times}10^6m^3 $to $11. 5{\times}I0^6m^3 $per half-tide.

  • PDF

Study on the Water Movement in Jinhae Bay (진해만의 해수유동에 관하여)

  • Lee, Jong Wha;Bong, Jong-Han;Han, Sang Joon
    • 한국해양학회지
    • /
    • v.9 no.2
    • /
    • pp.19-30
    • /
    • 1974
  • Current observations were carried out in Jinhae Bay area during the period of January to February 1974. The data were synthetically analyzed and the characteristics of the water movement in Jinhae Bay were studied. The water movement in Jinhae Bay area is a reversing tidal current type and the Semi- diurnal tidal current is predominant. The ebb current begins at about high water time and the strongest current occurs at about 3 hour after high water. The flood current begins at 0.2-1.0 hour before low water and the strongest current occurs at about 3-4 hour after low water. The main ebb current flows to SE direction with the maximum welocity, about 100cm/sec and the lood flows to NW with the maximum velocity, about 70cm/sec. Generally, the ebb current in Jinhae Bay is more predominat than the flood current except at the west and the north coast area of Gadeog-do where the flood current is more predominant.

  • PDF