• Title/Summary/Keyword: Floc Size

Search Result 96, Processing Time 0.028 seconds

Dewatering Characteristics for Physico-chemical Properties with Sewage Sludge (하수슬러지의 물리화학적인 조건에 따른 탈수 특성)

  • Lee, Chang-Han;Ahn, Kab-Hwan;Song, Seung-Koo
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • In this study, we found that dewatering properties were related with physico-chemical properties such as sludge concentration, pH, and zeta potential with sewage sludge, Ionic contents in digested sludge were in the order of $Ca^{2+}$ (14.2 mg/g) > $Mg^{2+}$ (1.9 mg/g) > $Na^+$ (1.4 mg/g) > $K^+$ (1.0 mg/g). Divalent ion more than monovalent have influenced on physico-chemical and dewatering properties. Floc size distribution in activated (AS) and digested sludge (DS) increased on lower pH range to be near isoelectric point and than specific resistance to filtration (SRF) decreased. A linear increase in SRF ($5.25\times10^{13}\sim2.86\times10^{14}$ m/kg in AS and $6.89\times10^{14}\sim1.09\times10^{15}$ m/kg in DS) was observed throughout low concentration range of 1230~9960 mg/L in AS and 2700~5400 mg/L in DS.

Effect of microbial biopolymers on the sedimentation behavior of kaolinite

  • Yeong-Man Kwon;Seok-Jun Kang;Gye-Chun Cho;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Clay sedimentation has been widely analyzed for its application in a variety of geotechnical constructions such as mine tailing, artificial islands, dredging, and reclamation. Chemical flocculants such as aluminum sulfate (Al2(SO4)3), ferric chloride (FeCl3), and ferric sulfate (Fe(SO4)3), have been adopted to accelerate the settling behaviors of clays. As an alternative clay flocculant with natural origin, this study investigated the settling of xanthan gum-treated kaolinite suspension in deionized water. The sedimentation of kaolinite in solutions of xanthan gum biopolymer (0%, 0.1%, 0.5%, 1.0%, and 2.0% in a clay mass) was measured until the sediment height was stabilized. Kaolinite was aggregated by xanthan gum via a direct electrical interaction between the negatively charged xanthan gum molecules and positively charged edge surface and via hydrogen bonding with kaolinite particles. The results revealed that the xanthan gum initially bound kaolinite aggregates, thereby forming larger floc sizes. Owing to their greater floc size, the aggregated kaolinite flocs induced by xanthan gum settled faster than the untreated kaolinite. Additionally, X-ray computed tomography images collected at various depths from the bottom demonstrated that the xanthan gum-induced aggregation resulted in denser sediment deposition. The findings of this study could inspire further efforts to accelerate the settling of kaolinite clays by adding xanthan gum.

Study on the relationship between Kolmogorov Length Scale and Floc Size Distribution (플럭의 입도분포와 난류 길이규모와의 상관관계)

  • Byun, Jisun;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.307-307
    • /
    • 2020
  • 하천에서 하상과의 접촉 없이 부유 상태로 이동하는 유사는 부유사로 정의된다. 부유사의 이동은 유사 입자의 침강 속도와 난류의 섭동 성분에 따라 결정된다. 실제 하천에서 부유사는 단일 크기가 아닌 여러 크기의 유사 입자가 혼재된 상태로 존재하는데, 유사의 이동을 보다 정확히 이해하기 위해서는 침강 속도를 결정하는 유사 입자 크기의 분포에 대한 이해가 요구된다. 진흙과 같은 점착성 유사의 경우에는 모래와 같은 비점착성 유사와는 달리 입도 분포를 구성하는 유사 입자의 크기가 끊임없이 변화한다. 이러한 유사의 특성 변화는 유사 알갱이 표면의 전자기적 점착력으로 인한 응집 현상(Flocculation Process)에서 기인한다. 응집 현상으로 인해 점착성 유사는 물과 유사 입자의 덩어리인 플럭(Floc)을 형성하며, 플럭의 특성은 지속적으로 변화한다. 따라서 점착성 유사의 이동을 이해하기 위해서는 흐름 특성 및 입도 분포뿐만 아니라 플럭의 응집 현상에 관한 이해가 함께 이루어져야함을 알 수 있다. 본 연구에서는 플럭의 응집 현상으로 인한 크기 변화와 입도 분포를 이해하기 위한 모형 개발의 방법론을 제시하고자 한다. 입도 분포 모형의 개발을 위해 추계학적 접근법이 이용되며, 추계학적 접근법을 이용하여 수치 실험을 수행하기 위해 몬테-카를로 방법이 적용되었다. 입도 분포 모형과 유사 이동 모형의 결합을 통해 흐름 내 부유 상태로 이동하는 점착성 유사 입도 분포에 관한 수치 모형 개발이 가능하다.

  • PDF

Effect of Suspension Property on Granule Characteristics and Compaction Behavior of Fine Si3Na4 Powder (분산계 특성이 질화규소 미분의 과립특성 및 충진거동에 미치는 영향)

  • 이해원;오성록
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.462-470
    • /
    • 1995
  • The characteristics of spray-dried granules are important for dry pressing operation since they have great influences on die-filling, compaction ratio, and resulting green microstructure. An attempt was made to control granule morphology and the packing structure of fine Si3N4 particles in granules by adjusting suspension property. Mercury porosimetry was used to characterize the pore structures of both granules and green compacts. Finally, the effects of particle packing structure in granules and green microstructure on sintering behavior were investigated.

  • PDF

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (II) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(II))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • In the precedent study it was presented that the comparison of thermal resistivity using various backfill materials including river sand regarding water content, dry unit weight and particle size distribution. Based on the precedent study, this study focused on developing the optimized backfill material that would improve the power transfer capability and minimize the thermal runaway due to an increase of power transmission capacity of underground power cables. When raw materials, such as river sand, recycled sand, crush rock and stone powder, are used for a backfill material, they has not efficient thermal resistivity around underground power cables. Thus, laboratory tests are performed by mixing Fly-ash, slag and floc with them, and then it is found that the optimized backfill material are required proper water content and maximum density. Through various experimental test, when coarse material, crush rock, is mixed with recycled sand, stone powder, slag or floc for a dense material, the thermal resistivity of it has $50^{\circ}C$-cm/Watt at optimum moisture content, and the increase of thermal resistivity does not happen in dry condition. The result of experiments approach the optimization of the backfill materials for underground power cables.

The Evaluation of Fouling Mechanism on Cross Flow Precoagulation-UF Process (십자형 응집-UF 막분리 공정 적용시 전처리 응집조건에 따른 막오염 메카니즘 규명)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.639-645
    • /
    • 2008
  • The objectives of this research are to (1) observe changes in particle size distribution due to formation of microflocs during coagulation process (2) identify the membrane fouling potential on cross flow system (3) investigate the mechanism of membrane fouling. The rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. The pretreatment of the raw water significantly reduced the fouling of the UF membrane. Also, the rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane. That is, during the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation not only improved dissolved organics removal efficiency but also flux recovery efficiency.

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF

Effects of Dual-Coagulant Performance (이중응집이 응집공정에 미치는 영향)

  • Kim, Hee-Geun;Moon, Byung-Hyun;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This research is to investigate the effect of the dual coagulant using inorganic coagulants($AICl3{\cdot}6H2O$) and polymer on the coagulant process. Jar-test was conducted by using Kaolin injected raw water. PDA(Photometric Dispersion Analyzer) equipment in order to analyze the size of the particles and the characteristics of the shapes. The change in the rate of sample ores' residual deposited after coagulants were also compared. According to the result derived from this experiment, the concentration of inorganic coagulant reduced 50% and the residual was lower by using dual coagulants compared to using single coagulant. However the dual coagulant required sufficient mixing time, and affected particle characteristics, with the effect of the injection order of coagulants, the simultaneous injection of inorganic coagulant and polymer showed the most effective in the particle removal.

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration (응집-정밀여과에 의한 도시하수의 처리)

  • Sim, Joo-Hyun;Kim, Dae-Hwan;Seo, Hyung-Joon;Chung, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.581-589
    • /
    • 2005
  • Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

The Effects of Anthracite Media Sphericity on Filtration Efficiency (안쓰라사이트 여재 원형도가 여과 효율에 미치는 영향)

  • Cheong, Won-suk;Choi, Suing-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.763-770
    • /
    • 2007
  • There are many design parameters affecting filtration efficiency such as filteration rate, media packing depth, size distribution, and so on. The sphericity, the ratio of the surface area of an equal volume sphere to the real surface area of the particles, is one of major physical characters of media. The effect of sphericity on the performance of anthracite filter has been investigated. Media from eight water treatment plants have been collected. The sphericity of each media has been calculated by using well known headloss equations such as Kozeny equation, Dahmarajah equation etc.. Columns packed with anthracite media having different sphericity have been used to compare headloss development, floc accumulation in the bed, particles in bed water, filtrate turbidities after backwash and so on. The repeated experiments have indicated that the sphericity of anthracite media may not have remarkable influence on the filter performance as it has been suspected. It also has been prospected in the experiment that the media of higher sphericity would store more particles in the bed and give better filtrate quality, if provided that the effective size and the size distribution of media would be the same.